1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
//! Futures
//!
//! This module contains a number of functions for working with `Future`s,
//! including the `FutureExt` trait which adds methods to `Future` types.

use futures_core::future::TryFuture;
use futures_sink::Sink;

/* TODO
mod join;
mod select;
pub use self::join::{Join, Join3, Join4, Join5};
pub use self::select::Select;

if_std! {
mod join_all;
mod select_all;
mod select_ok;
pub use self::join_all::{join_all, JoinAll};
pub use self::select_all::{SelectAll, SelectAllNext, select_all};
pub use self::select_ok::{SelectOk, select_ok};
}
*/

// Combinators
mod and_then;
pub use self::and_then::AndThen;

mod err_into;
pub use self::err_into::ErrInto;

mod flatten_sink;
pub use self::flatten_sink::FlattenSink;

mod into_future;
pub use self::into_future::IntoFuture;

mod map_err;
pub use self::map_err::MapErr;

mod map_ok;
pub use self::map_ok::MapOk;

mod or_else;
pub use self::or_else::OrElse;

mod unwrap_or_else;
pub use self::unwrap_or_else::UnwrapOrElse;

// Implementation details
mod try_chain;
crate use self::try_chain::{TryChain, TryChainAction};

impl<F: TryFuture> TryFutureExt for F {}

/// Adapters specific to `Result`-returning futures
pub trait TryFutureExt: TryFuture {
    /// Flatten the execution of this future when the successful result of this
    /// future is a sink.
    ///
    /// This can be useful when sink initialization is deferred, and it is
    /// convenient to work with that sink as if sink was available at the
    /// call site.
    ///
    /// Note that this function consumes this future and returns a wrapped
    /// version of it.
    fn flatten_sink(self) -> FlattenSink<Self, Self::Ok>
    where
        Self::Ok: Sink<SinkError=Self::Error>,
        Self: Sized,
    {
        flatten_sink::new(self)
    }

    /// Map this future's result to a different type, returning a new future of
    /// the resulting type.
    ///
    /// This function is similar to the `Option::map` or `Iterator::map` where
    /// it will change the type of the underlying future. This is useful to
    /// chain along a computation once a future has been resolved.
    ///
    /// The closure provided will only be called if this future is resolved
    /// successfully. If this future returns an error, panics, or is dropped,
    /// then the closure provided will never be invoked.
    ///
    /// Note that this function consumes the receiving future and returns a
    /// wrapped version of it, similar to the existing `map` methods in the
    /// standard library.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate futures;
    /// use futures::prelude::*;
    /// use futures::future;
    /// use futures::executor::block_on;
    ///
    /// let future = future::ready::<Result<i32, i32>>(Ok(1));
    /// let new_future = future.map_ok(|x| x + 3);
    /// assert_eq!(block_on(new_future), Ok(4));
    /// ```
    ///
    /// Calling `map_ok` on an errored `Future` has no effect:
    ///
    /// ```
    /// # extern crate futures;
    /// use futures::prelude::*;
    /// use futures::future;
    /// use futures::executor::block_on;
    ///
    /// let future = future::ready::<Result<i32, i32>>(Err(1));
    /// let new_future = future.map_ok(|x| x + 3);
    /// assert_eq!(block_on(new_future), Err(1));
    /// ```
    fn map_ok<T, F>(self, op: F) -> MapOk<Self, F>
        where F: FnOnce(Self::Ok) -> T,
              Self: Sized,
    {
        MapOk::new(self, op)
    }

    /// Map this future's error to a different error, returning a new future.
    ///
    /// This function is similar to the `Result::map_err` where it will change
    /// the error type of the underlying future. This is useful for example to
    /// ensure that futures have the same error type when used with combinators
    /// like `select` and `join`.
    ///
    /// The closure provided will only be called if this future is resolved
    /// with an error. If this future returns a success, panics, or is
    /// dropped, then the closure provided will never be invoked.
    ///
    /// Note that this function consumes the receiving future and returns a
    /// wrapped version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate futures;
    /// use futures::future;
    /// use futures::prelude::*;
    /// use futures::executor::block_on;
    ///
    /// let future = future::ready::<Result<i32, i32>>(Err(1));
    /// let new_future = future.map_err(|x| x + 3);
    /// assert_eq!(block_on(new_future), Err(4));
    /// ```
    ///
    /// Calling `map_err` on a successful `Future` has no effect:
    ///
    /// ```
    /// # extern crate futures;
    /// use futures::future;
    /// use futures::prelude::*;
    /// use futures::executor::block_on;
    ///
    /// let future = future::ready::<Result<i32, i32>>(Ok(1));
    /// let new_future = future.map_err(|x| x + 3);
    /// assert_eq!(block_on(new_future), Ok(1));
    /// ```
    fn map_err<E, F>(self, op: F) -> MapErr<Self, F>
        where F: FnOnce(Self::Error) -> E,
              Self: Sized,
    {
        MapErr::new(self, op)
    }

    /// Map this future's error to a new error type using the `Into` trait.
    ///
    /// This function does for futures what `try!` does for `Result`,
    /// by letting the compiler infer the type of the resulting error.
    /// Just as `map_err` above, this is useful for example to ensure
    /// that futures have the same error type when used with
    /// combinators like `select` and `join`.
    ///
    /// Note that this function consumes the receiving future and returns a
    /// wrapped version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate futures;
    /// use futures::prelude::*;
    /// use futures::future;
    ///
    /// let future_with_err_u8 = future::ready::<Result<(), u8>>(Err(1));
    /// let future_with_err_i32 = future_with_err_u8.err_into::<i32>();
    /// ```
    fn err_into<E>(self) -> ErrInto<Self, E>
        where Self: Sized,
              Self::Error: Into<E>
    {
        err_into::new(self)
    }

    /// Execute another future after this one has resolved successfully.
    ///
    /// This function can be used to chain two futures together and ensure that
    /// the final future isn't resolved until both have finished. The closure
    /// provided is yielded the successful result of this future and returns
    /// another value which can be converted into a future.
    ///
    /// Note that because `Result` implements the `IntoFuture` trait this method
    /// can also be useful for chaining fallible and serial computations onto
    /// the end of one future.
    ///
    /// If this future is dropped, panics, or completes with an error then the
    /// provided closure `f` is never called.
    ///
    /// Note that this function consumes the receiving future and returns a
    /// wrapped version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate futures;
    /// use futures::prelude::*;
    /// use futures::future::{self, Ready};
    ///
    /// let future_of_1 = future::ready::<Result<i32, i32>>(Ok(1));
    /// let future_of_4 = future_of_1.and_then(|x| {
    ///     future::ready(Ok(x + 3))
    /// });
    ///
    /// let future_of_err_1 = future::ready::<Result<i32, i32>>(Err(1));
    /// future_of_err_1.and_then(|_| -> Ready<Result<(), i32>> {
    ///     panic!("should not be called in case of an error");
    /// });
    /// ```
    fn and_then<Fut, F>(self, async_op: F) -> AndThen<Self, Fut, F>
        where F: FnOnce(Self::Ok) -> Fut,
              Fut: TryFuture<Error = Self::Error>,
              Self: Sized,
    {
        AndThen::new(self, async_op)
    }

    /// Execute another future if this one resolves with an error.
    ///
    /// Return a future that passes along this future's value if it succeeds,
    /// and otherwise passes the error to the closure `f` and waits for the
    /// future it returns. The closure may also simply return a value that can
    /// be converted into a future.
    ///
    /// Note that because `Result` implements the `IntoFuture` trait this method
    /// can also be useful for chaining together fallback computations, where
    /// when one fails, the next is attempted.
    ///
    /// If this future is dropped, panics, or completes successfully then the
    /// provided closure `f` is never called.
    ///
    /// Note that this function consumes the receiving future and returns a
    /// wrapped version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate futures;
    /// use futures::prelude::*;
    /// use futures::future::{self, Ready};
    ///
    /// let future_of_err_1 = future::ready::<Result<i32, i32>>(Err(1));
    /// let future_of_4 = future_of_err_1.or_else(|x| {
    ///     future::ready::<Result<i32, ()>>(Ok(x + 3))
    /// });
    ///
    /// let future_of_1 = future::ready::<Result<i32, i32>>(Ok(1));
    /// future_of_1.or_else(|_| -> Ready<Result<i32, ()>> {
    ///     panic!("should not be called in case of success");
    /// });
    /// ```
    fn or_else<Fut, F>(self, async_op: F) -> OrElse<Self, Fut, F>
        where F: FnOnce(Self::Error) -> Fut,
              Fut: TryFuture<Ok = Self::Ok>,
              Self: Sized,
    {
        OrElse::new(self, async_op)
    }

    /* TODO
    /// Waits for either one of two differently-typed futures to complete.
    ///
    /// This function will return a new future which awaits for either this or
    /// the `other` future to complete. The returned future will finish with
    /// both the value resolved and a future representing the completion of the
    /// other work.
    ///
    /// Note that this function consumes the receiving futures and returns a
    /// wrapped version of them.
    ///
    /// Also note that if both this and the second future have the same
    /// success/error type you can use the `Either::split` method to
    /// conveniently extract out the value at the end.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate futures;
    /// use futures::prelude::*;
    /// use futures::future::{self, Either};
    ///
    /// // A poor-man's join implemented on top of select
    ///
    /// fn join<A, B, E>(a: A, b: B) -> Box<Future<Item=(A::Item, B::Item), Error=E>>
    ///     where A: Future<Error = E> + 'static,
    ///           B: Future<Error = E> + 'static,
    ///           E: 'static,
    /// {
    ///     Box::new(a.select(b).then(|res| -> Box<Future<Item=_, Error=_>> {
    ///         match res {
    ///             Ok(Either::Left((x, b))) => Box::new(b.map(move |y| (x, y))),
    ///             Ok(Either::Right((y, a))) => Box::new(a.map(move |x| (x, y))),
    ///             Err(Either::Left((e, _))) => Box::new(future::err(e)),
    ///             Err(Either::Right((e, _))) => Box::new(future::err(e)),
    ///         }
    ///     }))
    /// }}
    /// ```
    fn select<B>(self, other: B) -> Select<Self, B::Future>
        where B: IntoFuture, Self: Sized
    {
        select::new(self, other.into_future())
    }

    /// Joins the result of two futures, waiting for them both to complete.
    ///
    /// This function will return a new future which awaits both this and the
    /// `other` future to complete. The returned future will finish with a tuple
    /// of both results.
    ///
    /// Both futures must have the same error type, and if either finishes with
    /// an error then the other will be dropped and that error will be
    /// returned.
    ///
    /// Note that this function consumes the receiving future and returns a
    /// wrapped version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate futures;
    /// use futures::prelude::*;
    /// use futures::future;
    /// use futures::executor::block_on;
    ///
    /// let a = future::ok::<i32, i32>(1);
    /// let b = future::ok::<i32, i32>(2);
    /// let pair = a.join(b);
    ///
    /// assert_eq!(block_on(pair), Ok((1, 2)));
    /// # }
    /// ```
    ///
    /// If one or both of the joined `Future`s is errored, the resulting
    /// `Future` will be errored:
    ///
    /// ```
    /// # extern crate futures;
    /// use futures::prelude::*;
    /// use futures::future;
    /// use futures::executor::block_on;
    ///
    /// let a = future::ok::<i32, i32>(1);
    /// let b = future::err::<i32, i32>(2);
    /// let pair = a.join(b);
    ///
    /// assert_eq!(block_on(pair), Err(2));
    /// # }
    /// ```
    fn join<B>(self, other: B) -> Join<Self, B::Future>
        where B: IntoFuture<Error=Self::Error>,
              Self: Sized,
    {
        let f = join::new(self, other.into_future());
        assert_future::<(Self::Item, B::Item), Self::Error, _>(f)
    }

    /// Same as `join`, but with more futures.
    fn join3<B, C>(self, b: B, c: C) -> Join3<Self, B::Future, C::Future>
        where B: IntoFuture<Error=Self::Error>,
              C: IntoFuture<Error=Self::Error>,
              Self: Sized,
    {
        join::new3(self, b.into_future(), c.into_future())
    }

    /// Same as `join`, but with more futures.
    fn join4<B, C, D>(self, b: B, c: C, d: D)
                      -> Join4<Self, B::Future, C::Future, D::Future>
        where B: IntoFuture<Error=Self::Error>,
              C: IntoFuture<Error=Self::Error>,
              D: IntoFuture<Error=Self::Error>,
              Self: Sized,
    {
        join::new4(self, b.into_future(), c.into_future(), d.into_future())
    }

    /// Same as `join`, but with more futures.
    fn join5<B, C, D, E>(self, b: B, c: C, d: D, e: E)
                         -> Join5<Self, B::Future, C::Future, D::Future, E::Future>
        where B: IntoFuture<Error=Self::Error>,
              C: IntoFuture<Error=Self::Error>,
              D: IntoFuture<Error=Self::Error>,
              E: IntoFuture<Error=Self::Error>,
              Self: Sized,
    {
        join::new5(self, b.into_future(), c.into_future(), d.into_future(),
                   e.into_future())
    }
*/

    /// Handle errors generated by this future by converting them into
    /// `Self::Item`.
    ///
    /// Because it can never produce an error, the returned `UnwrapOrElse` future can
    /// conform to any specific `Error` type, including `Never`.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate futures;
    /// use futures::prelude::*;
    /// use futures::future;
    /// use futures::executor::block_on;
    ///
    /// let future = future::ready::<Result<(), &str>>(Err("Boom!"));
    /// let new_future = future.unwrap_or_else(|_| ());
    /// assert_eq!(block_on(new_future), ());
    /// ```
    fn unwrap_or_else<F>(self, op: F) -> UnwrapOrElse<Self, F>
        where Self: Sized,
              F: FnOnce(Self::Error) -> Self::Ok
    {
        UnwrapOrElse::new(self, op)
    }

    /// Wraps a `TryFuture` so that it implements `Future`. `TryFuture`s
    /// currently do not implement the `Future` trait due to limitations of
    /// the compiler.
    fn into_future(self) -> IntoFuture<Self>
        where Self: Sized,
    {
        IntoFuture::new(self)
    }
}