1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
//! Futures //! //! This module contains a number of functions for working with `Future`s, //! including the `FutureExt` trait which adds methods to `Future` types. use futures_core::future::TryFuture; use futures_sink::Sink; /* TODO mod join; mod select; pub use self::join::{Join, Join3, Join4, Join5}; pub use self::select::Select; if_std! { mod join_all; mod select_all; mod select_ok; pub use self::join_all::{join_all, JoinAll}; pub use self::select_all::{SelectAll, SelectAllNext, select_all}; pub use self::select_ok::{SelectOk, select_ok}; } */ // Combinators mod and_then; pub use self::and_then::AndThen; mod err_into; pub use self::err_into::ErrInto; mod flatten_sink; pub use self::flatten_sink::FlattenSink; mod into_future; pub use self::into_future::IntoFuture; mod map_err; pub use self::map_err::MapErr; mod map_ok; pub use self::map_ok::MapOk; mod or_else; pub use self::or_else::OrElse; mod unwrap_or_else; pub use self::unwrap_or_else::UnwrapOrElse; // Implementation details mod try_chain; crate use self::try_chain::{TryChain, TryChainAction}; impl<F: TryFuture> TryFutureExt for F {} /// Adapters specific to `Result`-returning futures pub trait TryFutureExt: TryFuture { /// Flatten the execution of this future when the successful result of this /// future is a sink. /// /// This can be useful when sink initialization is deferred, and it is /// convenient to work with that sink as if sink was available at the /// call site. /// /// Note that this function consumes this future and returns a wrapped /// version of it. fn flatten_sink(self) -> FlattenSink<Self, Self::Ok> where Self::Ok: Sink<SinkError=Self::Error>, Self: Sized, { flatten_sink::new(self) } /// Map this future's result to a different type, returning a new future of /// the resulting type. /// /// This function is similar to the `Option::map` or `Iterator::map` where /// it will change the type of the underlying future. This is useful to /// chain along a computation once a future has been resolved. /// /// The closure provided will only be called if this future is resolved /// successfully. If this future returns an error, panics, or is dropped, /// then the closure provided will never be invoked. /// /// Note that this function consumes the receiving future and returns a /// wrapped version of it, similar to the existing `map` methods in the /// standard library. /// /// # Examples /// /// ``` /// # extern crate futures; /// use futures::prelude::*; /// use futures::future; /// use futures::executor::block_on; /// /// let future = future::ready::<Result<i32, i32>>(Ok(1)); /// let new_future = future.map_ok(|x| x + 3); /// assert_eq!(block_on(new_future), Ok(4)); /// ``` /// /// Calling `map_ok` on an errored `Future` has no effect: /// /// ``` /// # extern crate futures; /// use futures::prelude::*; /// use futures::future; /// use futures::executor::block_on; /// /// let future = future::ready::<Result<i32, i32>>(Err(1)); /// let new_future = future.map_ok(|x| x + 3); /// assert_eq!(block_on(new_future), Err(1)); /// ``` fn map_ok<T, F>(self, op: F) -> MapOk<Self, F> where F: FnOnce(Self::Ok) -> T, Self: Sized, { MapOk::new(self, op) } /// Map this future's error to a different error, returning a new future. /// /// This function is similar to the `Result::map_err` where it will change /// the error type of the underlying future. This is useful for example to /// ensure that futures have the same error type when used with combinators /// like `select` and `join`. /// /// The closure provided will only be called if this future is resolved /// with an error. If this future returns a success, panics, or is /// dropped, then the closure provided will never be invoked. /// /// Note that this function consumes the receiving future and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// # extern crate futures; /// use futures::future; /// use futures::prelude::*; /// use futures::executor::block_on; /// /// let future = future::ready::<Result<i32, i32>>(Err(1)); /// let new_future = future.map_err(|x| x + 3); /// assert_eq!(block_on(new_future), Err(4)); /// ``` /// /// Calling `map_err` on a successful `Future` has no effect: /// /// ``` /// # extern crate futures; /// use futures::future; /// use futures::prelude::*; /// use futures::executor::block_on; /// /// let future = future::ready::<Result<i32, i32>>(Ok(1)); /// let new_future = future.map_err(|x| x + 3); /// assert_eq!(block_on(new_future), Ok(1)); /// ``` fn map_err<E, F>(self, op: F) -> MapErr<Self, F> where F: FnOnce(Self::Error) -> E, Self: Sized, { MapErr::new(self, op) } /// Map this future's error to a new error type using the `Into` trait. /// /// This function does for futures what `try!` does for `Result`, /// by letting the compiler infer the type of the resulting error. /// Just as `map_err` above, this is useful for example to ensure /// that futures have the same error type when used with /// combinators like `select` and `join`. /// /// Note that this function consumes the receiving future and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// # extern crate futures; /// use futures::prelude::*; /// use futures::future; /// /// let future_with_err_u8 = future::ready::<Result<(), u8>>(Err(1)); /// let future_with_err_i32 = future_with_err_u8.err_into::<i32>(); /// ``` fn err_into<E>(self) -> ErrInto<Self, E> where Self: Sized, Self::Error: Into<E> { err_into::new(self) } /// Execute another future after this one has resolved successfully. /// /// This function can be used to chain two futures together and ensure that /// the final future isn't resolved until both have finished. The closure /// provided is yielded the successful result of this future and returns /// another value which can be converted into a future. /// /// Note that because `Result` implements the `IntoFuture` trait this method /// can also be useful for chaining fallible and serial computations onto /// the end of one future. /// /// If this future is dropped, panics, or completes with an error then the /// provided closure `f` is never called. /// /// Note that this function consumes the receiving future and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// # extern crate futures; /// use futures::prelude::*; /// use futures::future::{self, Ready}; /// /// let future_of_1 = future::ready::<Result<i32, i32>>(Ok(1)); /// let future_of_4 = future_of_1.and_then(|x| { /// future::ready(Ok(x + 3)) /// }); /// /// let future_of_err_1 = future::ready::<Result<i32, i32>>(Err(1)); /// future_of_err_1.and_then(|_| -> Ready<Result<(), i32>> { /// panic!("should not be called in case of an error"); /// }); /// ``` fn and_then<Fut, F>(self, async_op: F) -> AndThen<Self, Fut, F> where F: FnOnce(Self::Ok) -> Fut, Fut: TryFuture<Error = Self::Error>, Self: Sized, { AndThen::new(self, async_op) } /// Execute another future if this one resolves with an error. /// /// Return a future that passes along this future's value if it succeeds, /// and otherwise passes the error to the closure `f` and waits for the /// future it returns. The closure may also simply return a value that can /// be converted into a future. /// /// Note that because `Result` implements the `IntoFuture` trait this method /// can also be useful for chaining together fallback computations, where /// when one fails, the next is attempted. /// /// If this future is dropped, panics, or completes successfully then the /// provided closure `f` is never called. /// /// Note that this function consumes the receiving future and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// # extern crate futures; /// use futures::prelude::*; /// use futures::future::{self, Ready}; /// /// let future_of_err_1 = future::ready::<Result<i32, i32>>(Err(1)); /// let future_of_4 = future_of_err_1.or_else(|x| { /// future::ready::<Result<i32, ()>>(Ok(x + 3)) /// }); /// /// let future_of_1 = future::ready::<Result<i32, i32>>(Ok(1)); /// future_of_1.or_else(|_| -> Ready<Result<i32, ()>> { /// panic!("should not be called in case of success"); /// }); /// ``` fn or_else<Fut, F>(self, async_op: F) -> OrElse<Self, Fut, F> where F: FnOnce(Self::Error) -> Fut, Fut: TryFuture<Ok = Self::Ok>, Self: Sized, { OrElse::new(self, async_op) } /* TODO /// Waits for either one of two differently-typed futures to complete. /// /// This function will return a new future which awaits for either this or /// the `other` future to complete. The returned future will finish with /// both the value resolved and a future representing the completion of the /// other work. /// /// Note that this function consumes the receiving futures and returns a /// wrapped version of them. /// /// Also note that if both this and the second future have the same /// success/error type you can use the `Either::split` method to /// conveniently extract out the value at the end. /// /// # Examples /// /// ``` /// # extern crate futures; /// use futures::prelude::*; /// use futures::future::{self, Either}; /// /// // A poor-man's join implemented on top of select /// /// fn join<A, B, E>(a: A, b: B) -> Box<Future<Item=(A::Item, B::Item), Error=E>> /// where A: Future<Error = E> + 'static, /// B: Future<Error = E> + 'static, /// E: 'static, /// { /// Box::new(a.select(b).then(|res| -> Box<Future<Item=_, Error=_>> { /// match res { /// Ok(Either::Left((x, b))) => Box::new(b.map(move |y| (x, y))), /// Ok(Either::Right((y, a))) => Box::new(a.map(move |x| (x, y))), /// Err(Either::Left((e, _))) => Box::new(future::err(e)), /// Err(Either::Right((e, _))) => Box::new(future::err(e)), /// } /// })) /// }} /// ``` fn select<B>(self, other: B) -> Select<Self, B::Future> where B: IntoFuture, Self: Sized { select::new(self, other.into_future()) } /// Joins the result of two futures, waiting for them both to complete. /// /// This function will return a new future which awaits both this and the /// `other` future to complete. The returned future will finish with a tuple /// of both results. /// /// Both futures must have the same error type, and if either finishes with /// an error then the other will be dropped and that error will be /// returned. /// /// Note that this function consumes the receiving future and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// # extern crate futures; /// use futures::prelude::*; /// use futures::future; /// use futures::executor::block_on; /// /// let a = future::ok::<i32, i32>(1); /// let b = future::ok::<i32, i32>(2); /// let pair = a.join(b); /// /// assert_eq!(block_on(pair), Ok((1, 2))); /// # } /// ``` /// /// If one or both of the joined `Future`s is errored, the resulting /// `Future` will be errored: /// /// ``` /// # extern crate futures; /// use futures::prelude::*; /// use futures::future; /// use futures::executor::block_on; /// /// let a = future::ok::<i32, i32>(1); /// let b = future::err::<i32, i32>(2); /// let pair = a.join(b); /// /// assert_eq!(block_on(pair), Err(2)); /// # } /// ``` fn join<B>(self, other: B) -> Join<Self, B::Future> where B: IntoFuture<Error=Self::Error>, Self: Sized, { let f = join::new(self, other.into_future()); assert_future::<(Self::Item, B::Item), Self::Error, _>(f) } /// Same as `join`, but with more futures. fn join3<B, C>(self, b: B, c: C) -> Join3<Self, B::Future, C::Future> where B: IntoFuture<Error=Self::Error>, C: IntoFuture<Error=Self::Error>, Self: Sized, { join::new3(self, b.into_future(), c.into_future()) } /// Same as `join`, but with more futures. fn join4<B, C, D>(self, b: B, c: C, d: D) -> Join4<Self, B::Future, C::Future, D::Future> where B: IntoFuture<Error=Self::Error>, C: IntoFuture<Error=Self::Error>, D: IntoFuture<Error=Self::Error>, Self: Sized, { join::new4(self, b.into_future(), c.into_future(), d.into_future()) } /// Same as `join`, but with more futures. fn join5<B, C, D, E>(self, b: B, c: C, d: D, e: E) -> Join5<Self, B::Future, C::Future, D::Future, E::Future> where B: IntoFuture<Error=Self::Error>, C: IntoFuture<Error=Self::Error>, D: IntoFuture<Error=Self::Error>, E: IntoFuture<Error=Self::Error>, Self: Sized, { join::new5(self, b.into_future(), c.into_future(), d.into_future(), e.into_future()) } */ /// Handle errors generated by this future by converting them into /// `Self::Item`. /// /// Because it can never produce an error, the returned `UnwrapOrElse` future can /// conform to any specific `Error` type, including `Never`. /// /// # Examples /// /// ``` /// # extern crate futures; /// use futures::prelude::*; /// use futures::future; /// use futures::executor::block_on; /// /// let future = future::ready::<Result<(), &str>>(Err("Boom!")); /// let new_future = future.unwrap_or_else(|_| ()); /// assert_eq!(block_on(new_future), ()); /// ``` fn unwrap_or_else<F>(self, op: F) -> UnwrapOrElse<Self, F> where Self: Sized, F: FnOnce(Self::Error) -> Self::Ok { UnwrapOrElse::new(self, op) } /// Wraps a `TryFuture` so that it implements `Future`. `TryFuture`s /// currently do not implement the `Future` trait due to limitations of /// the compiler. fn into_future(self) -> IntoFuture<Self> where Self: Sized, { IntoFuture::new(self) } }