1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
//! Futures //! //! This module contains a number of functions for working with `Future`s, //! including the `FutureExt` trait which adds methods to `Future` types. use futures_core::future::TryFuture; use futures_sink::Sink; #[cfg(feature = "compat")] use crate::compat::Compat; /* TODO mod join; mod select; pub use self::join::{Join, Join3, Join4, Join5}; pub use self::select::Select; #[cfg(feature = "std")] mod join_all; #[cfg(feature = "std")] mod select_all; #[cfg(feature = "std")] mod select_ok; #[cfg(feature = "std")] pub use self::select_all::{SelectAll, SelectAllNext, select_all}; #[cfg(feature = "std")] pub use self::select_ok::{SelectOk, select_ok}; */ // Combinators mod and_then; pub use self::and_then::AndThen; mod err_into; pub use self::err_into::ErrInto; mod flatten_sink; pub use self::flatten_sink::FlattenSink; mod try_join; pub use self::try_join::{TryJoin, TryJoin3, TryJoin4, TryJoin5}; mod into_future; pub use self::into_future::IntoFuture; mod map_err; pub use self::map_err::MapErr; mod map_ok; pub use self::map_ok::MapOk; mod or_else; pub use self::or_else::OrElse; mod unwrap_or_else; pub use self::unwrap_or_else::UnwrapOrElse; #[cfg(feature = "std")] mod try_join_all; #[cfg(feature = "std")] pub use self::try_join_all::{try_join_all, TryJoinAll}; // Implementation details mod try_chain; pub(crate) use self::try_chain::{TryChain, TryChainAction}; impl<Fut: TryFuture> TryFutureExt for Fut {} /// Adapters specific to [`Result`]-returning futures pub trait TryFutureExt: TryFuture { /// Flattens the execution of this future when the successful result of this /// future is a [`Sink`]. /// /// This can be useful when sink initialization is deferred, and it is /// convenient to work with that sink as if the sink was available at the /// call site. /// /// Note that this function consumes this future and returns a wrapped /// version of it. /// /// # Examples /// /// ``` /// #![feature(futures_api)] /// use futures::future::{Future, TryFutureExt}; /// use futures::sink::Sink; /// # use futures::channel::mpsc::{self, SendError}; /// # type T = i32; /// # type E = SendError; /// /// fn make_sink_async() -> impl Future<Output = Result< /// impl Sink<SinkItem = T, SinkError = E>, /// E, /// >> { // ... } /// # let (tx, _rx) = mpsc::unbounded::<i32>(); /// # futures::future::ready(Ok(tx)) /// # } /// fn take_sink(sink: impl Sink<SinkItem = T, SinkError = E>) { /* ... */ } /// /// let fut = make_sink_async(); /// take_sink(fut.flatten_sink()) /// ``` fn flatten_sink(self) -> FlattenSink<Self, Self::Ok> where Self::Ok: Sink<SinkError = Self::Error>, Self: Sized, { FlattenSink::new(self) } /// Maps this future's success value to a different value. /// /// This method can be used to change the [`Ok`](TryFuture::Ok) type of the /// future into a different type. It is similar to the [`Result::map`] /// method. You can use this method to chain along a computation once the /// future has been resolved. /// /// The provided closure `f` will only be called if this future is resolved /// to an [`Ok`]. If it resolves to an [`Err`], panics, or is dropped, then /// the provided closure will never be invoked. /// /// Note that this method consumes the future it is called on and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// #![feature(async_await, await_macro, futures_api)] /// use futures::future::{self, TryFutureExt}; /// /// # futures::executor::block_on(async { /// let future = future::ready(Ok::<i32, i32>(1)); /// let future = future.map_ok(|x| x + 3); /// assert_eq!(await!(future), Ok(4)); /// # }); /// ``` /// /// Calling [`map_ok`](TryFutureExt::map_ok) on an errored future has no /// effect: /// /// ``` /// #![feature(async_await, await_macro, futures_api)] /// use futures::future::{self, TryFutureExt}; /// /// # futures::executor::block_on(async { /// let future = future::ready(Err::<i32, i32>(1)); /// let future = future.map_ok(|x| x + 3); /// assert_eq!(await!(future), Err(1)); /// # }); /// ``` fn map_ok<T, F>(self, f: F) -> MapOk<Self, F> where F: FnOnce(Self::Ok) -> T, Self: Sized, { MapOk::new(self, f) } /// Maps this future's error value to a different value. /// /// This method can be used to change the [`Error`](TryFuture::Error) type /// of the future into a different type. It is similar to the /// [`Result::map_err`] method. You can use this method for example to /// ensure that futures have the same [`Error`](TryFuture::Error) type when /// using [`select!`] or [`join!`]. /// /// The provided closure `f` will only be called if this future is resolved /// to an [`Err`]. If it resolves to an [`Ok`], panics, or is dropped, then /// the provided closure will never be invoked. /// /// Note that this method consumes the future it is called on and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// #![feature(async_await, await_macro, futures_api)] /// use futures::future::{self, TryFutureExt}; /// /// # futures::executor::block_on(async { /// let future = future::ready(Err::<i32, i32>(1)); /// let future = future.map_err(|x| x + 3); /// assert_eq!(await!(future), Err(4)); /// # }); /// ``` /// /// Calling [`map_err`](TryFutureExt::map_err) on a successful future has /// no effect: /// /// ``` /// #![feature(async_await, await_macro, futures_api)] /// use futures::future::{self, TryFutureExt}; /// /// # futures::executor::block_on(async { /// let future = future::ready(Ok::<i32, i32>(1)); /// let future = future.map_err(|x| x + 3); /// assert_eq!(await!(future), Ok(1)); /// # }); /// ``` fn map_err<E, F>(self, f: F) -> MapErr<Self, F> where F: FnOnce(Self::Error) -> E, Self: Sized, { MapErr::new(self, f) } /// Maps this future's [`Error`](TryFuture::Error) to a new error type /// using the [`Into`](std::convert::Into) trait. /// /// This method does for futures what the `?`-operator does for /// [`Result`]: It lets the compiler infer the type of the resulting /// error. Just as [`map_err`](TryFutureExt::map_err), this is useful for /// example to ensure that futures have the same [`Error`](TryFuture::Error) /// type when using [`select!`] or [`join!`]. /// /// Note that this method consumes the future it is called on and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// #![feature(async_await, await_macro, futures_api)] /// use futures::future::{self, TryFutureExt}; /// /// # futures::executor::block_on(async { /// let future_err_u8 = future::ready(Err::<(), u8>(1)); /// let future_err_i32 = future_err_u8.err_into::<i32>(); /// # }); /// ``` fn err_into<E>(self) -> ErrInto<Self, E> where Self: Sized, Self::Error: Into<E> { ErrInto::new(self) } /// Executes another future after this one resolves successfully. The /// success value is passed to a closure to create this subsequent future. /// /// The provided closure `f` will only be called if this future is resolved /// to an [`Ok`]. If this future resolves to an [`Err`], panics, or is /// dropped, then the provided closure will never be invoked. The /// [`Error`](TryFuture::Error) type of this future and the future /// returned by `f` have to match. /// /// Note that this method consumes the future it is called on and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// #![feature(async_await, await_macro, futures_api)] /// use futures::future::{self, TryFutureExt}; /// /// # futures::executor::block_on(async { /// let future = future::ready(Ok::<i32, i32>(1)); /// let future = future.and_then(|x| future::ready(Ok::<i32, i32>(x + 3))); /// assert_eq!(await!(future), Ok(4)); /// # }); /// ``` /// /// Calling [`and_then`](TryFutureExt::and_then) on an errored future has no /// effect: /// /// ``` /// #![feature(async_await, await_macro, futures_api)] /// use futures::future::{self, TryFutureExt}; /// /// # futures::executor::block_on(async { /// let future = future::ready(Err::<i32, i32>(1)); /// let future = future.and_then(|x| future::ready(Err::<i32, i32>(x + 3))); /// assert_eq!(await!(future), Err(1)); /// # }); /// ``` fn and_then<Fut, F>(self, f: F) -> AndThen<Self, Fut, F> where F: FnOnce(Self::Ok) -> Fut, Fut: TryFuture<Error = Self::Error>, Self: Sized, { AndThen::new(self, f) } /// Executes another future if this one resolves to an error. The /// error value is passed to a closure to create this subsequent future. /// /// The provided closure `f` will only be called if this future is resolved /// to an [`Err`]. If this future resolves to an [`Ok`], panics, or is /// dropped, then the provided closure will never be invoked. The /// [`Ok`](TryFuture::Ok) type of this future and the future returned by `f` /// have to match. /// /// Note that this method consumes the future it is called on and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// #![feature(async_await, await_macro, futures_api)] /// use futures::future::{self, TryFutureExt}; /// /// # futures::executor::block_on(async { /// let future = future::ready(Err::<i32, i32>(1)); /// let future = future.or_else(|x| future::ready(Err::<i32, i32>(x + 3))); /// assert_eq!(await!(future), Err(4)); /// # }); /// ``` /// /// Calling [`or_else`](TryFutureExt::or_else) on a successful future has /// no effect: /// /// ``` /// #![feature(async_await, await_macro, futures_api)] /// use futures::future::{self, TryFutureExt}; /// /// # futures::executor::block_on(async { /// let future = future::ready(Ok::<i32, i32>(1)); /// let future = future.or_else(|x| future::ready(Ok::<i32, i32>(x + 3))); /// assert_eq!(await!(future), Ok(1)); /// # }); /// ``` fn or_else<Fut, F>(self, f: F) -> OrElse<Self, Fut, F> where F: FnOnce(Self::Error) -> Fut, Fut: TryFuture<Ok = Self::Ok>, Self: Sized, { OrElse::new(self, f) } /* TODO /// Waits for either one of two differently-typed futures to complete. /// /// This function will return a new future which awaits for either this or /// the `other` future to complete. The returned future will finish with /// both the value resolved and a future representing the completion of the /// other work. /// /// Note that this function consumes the receiving futures and returns a /// wrapped version of them. /// /// Also note that if both this and the second future have the same /// success/error type you can use the `Either::split` method to /// conveniently extract out the value at the end. /// /// # Examples /// /// ``` /// use futures::future::{self, Either}; /// /// // A poor-man's join implemented on top of select /// /// fn join<A, B, E>(a: A, b: B) -> Box<Future<Item=(A::Item, B::Item), Error=E>> /// where A: Future<Error = E> + 'static, /// B: Future<Error = E> + 'static, /// E: 'static, /// { /// Box::new(a.select(b).then(|res| -> Box<Future<Item=_, Error=_>> { /// match res { /// Ok(Either::Left((x, b))) => Box::new(b.map(move |y| (x, y))), /// Ok(Either::Right((y, a))) => Box::new(a.map(move |x| (x, y))), /// Err(Either::Left((e, _))) => Box::new(future::err(e)), /// Err(Either::Right((e, _))) => Box::new(future::err(e)), /// } /// })) /// }} /// ``` fn select<B>(self, other: B) -> Select<Self, B::Future> where B: IntoFuture, Self: Sized { select::new(self, other.into_future()) } /// Joins the result of two futures, waiting for them both to complete. /// /// This function will return a new future which awaits both this and the /// `other` future to complete. The returned future will finish with a tuple /// of both results. /// /// Both futures must have the same error type, and if either finishes with /// an error then the other will be dropped and that error will be /// returned. /// /// Note that this method consumes the future it is called on and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// use futures::future; /// use futures::executor::block_on; /// /// let a = future::ok::<i32, i32>(1); /// let b = future::ok::<i32, i32>(2); /// let pair = a.join(b); /// /// assert_eq!(block_on(pair), Ok((1, 2))); /// # } /// ``` /// /// If one or both of the joined `Future`s is errored, the resulting /// `Future` will be errored: /// /// ``` /// use futures::executor::block_on; /// use futures::future::{self, FutureExt}; /// /// let a = future::ok::<i32, i32>(1); /// let b = future::err::<i32, i32>(2); /// let pair = a.join(b); /// /// assert_eq!(block_on(pair), Err(2)); /// # } /// ``` fn join<B>(self, other: B) -> Join<Self, B::Future> where B: IntoFuture<Error=Self::Error>, Self: Sized, { let f = join::new(self, other.into_future()); assert_future::<(Self::Item, B::Item), Self::Error, _>(f) } /// Same as `join`, but with more futures. fn join3<B, C>(self, b: B, c: C) -> Join3<Self, B::Future, C::Future> where B: IntoFuture<Error=Self::Error>, C: IntoFuture<Error=Self::Error>, Self: Sized, { join::new3(self, b.into_future(), c.into_future()) } /// Same as `join`, but with more futures. fn join4<B, C, D>(self, b: B, c: C, d: D) -> Join4<Self, B::Future, C::Future, D::Future> where B: IntoFuture<Error=Self::Error>, C: IntoFuture<Error=Self::Error>, D: IntoFuture<Error=Self::Error>, Self: Sized, { join::new4(self, b.into_future(), c.into_future(), d.into_future()) } /// Same as `join`, but with more futures. fn join5<B, C, D, E>(self, b: B, c: C, d: D, e: E) -> Join5<Self, B::Future, C::Future, D::Future, E::Future> where B: IntoFuture<Error=Self::Error>, C: IntoFuture<Error=Self::Error>, D: IntoFuture<Error=Self::Error>, E: IntoFuture<Error=Self::Error>, Self: Sized, { join::new5(self, b.into_future(), c.into_future(), d.into_future(), e.into_future()) } */ /// Unwraps this future's ouput, producing a future with this future's /// [`Ok`](TryFuture::Ok) type as its /// [`Output`](std::future::Future::Output) type. /// /// If this future is resolved successfully, the returned future will /// contain the original future's success value as output. Otherwise, the /// closure `f` is called with the error value to produce an alternate /// success value. /// /// This method is similar to the [`Result::unwrap_or_else`] method. /// /// # Examples /// /// ``` /// #![feature(async_await, await_macro, futures_api)] /// use futures::future::{self, TryFutureExt}; /// /// # futures::executor::block_on(async { /// let future = future::ready(Err::<(), &str>("Boom!")); /// let future = future.unwrap_or_else(|_| ()); /// assert_eq!(await!(future), ()); /// # }); /// ``` fn unwrap_or_else<F>(self, f: F) -> UnwrapOrElse<Self, F> where Self: Sized, F: FnOnce(Self::Error) -> Self::Ok { UnwrapOrElse::new(self, f) } /// Wraps a [`TryFuture`] into a future compatable with libraries using /// futures 0.1 future definitons. Requires the `compat` feature to enable. #[cfg(feature = "compat")] fn compat(self) -> Compat<Self> where Self: Sized + Unpin, { Compat::new(self) } /// Wraps a [`TryFuture`] into a type that implements /// [`Future`](std::future::Future). /// /// [`TryFuture`]s currently do not implement the /// [`Future`](std::future::Future) trait due to limitations of the /// compiler. /// /// # Examples /// /// ``` /// #![feature(futures_api)] /// use futures::future::{Future, TryFuture, TryFutureExt}; /// /// # type T = i32; /// # type E = (); /// fn make_try_future() -> impl TryFuture<Ok = T, Error = E> { // ... } /// # futures::future::ready(Ok::<i32, ()>(1)) /// # } /// fn take_future(future: impl Future<Output = Result<T, E>>) { /* ... */ } /// /// take_future(make_try_future().into_future()); /// ``` fn into_future(self) -> IntoFuture<Self> where Self: Sized, { IntoFuture::new(self) } /// Joins the result of two futures, waiting for them both to complete or /// for one to produce an error. /// /// This function will return a new future which awaits both this and the /// `other` future to complete. If successful, the returned future will /// finish with a tuple of both results. If unsuccesful, it will complete /// with the first error encountered. /// /// Note that this function consumes the receiving future and returns a /// wrapped version of it. /// /// # Examples /// /// When used on multiple futures that return [`Ok`], `try_join` will return /// [`Ok`] of a tuple of the values: /// /// ``` /// #![feature(async_await, await_macro, futures_api)] /// # futures::executor::block_on(async { /// use futures::future::{self, TryFutureExt}; /// /// let a = future::ready(Ok::<i32, i32>(1)); /// let b = future::ready(Ok::<i32, i32>(2)); /// let pair = a.try_join(b); /// /// assert_eq!(await!(pair), Ok((1, 2))); /// # }); /// ``` /// /// If one of the futures resolves to an error, `try_join` will return /// that error: /// /// ``` /// #![feature(async_await, await_macro, futures_api)] /// # futures::executor::block_on(async { /// use futures::future::{self, TryFutureExt}; /// /// let a = future::ready(Ok::<i32, i32>(1)); /// let b = future::ready(Err::<i32, i32>(2)); /// let pair = a.try_join(b); /// /// assert_eq!(await!(pair), Err(2)); /// # }); /// ``` fn try_join<Fut2>(self, other: Fut2) -> TryJoin<Self, Fut2> where Fut2: TryFuture<Error = Self::Error>, Self: Sized, { TryJoin::new(self, other) } /// Same as [`try_join`](TryFutureExt::try_join), but with more futures. /// /// # Examples /// /// ``` /// #![feature(async_await, await_macro, futures_api)] /// # futures::executor::block_on(async { /// use futures::future::{self, TryFutureExt}; /// /// let a = future::ready(Ok::<i32, i32>(1)); /// let b = future::ready(Ok::<i32, i32>(2)); /// let c = future::ready(Ok::<i32, i32>(3)); /// let tuple = a.try_join3(b, c); /// /// assert_eq!(await!(tuple), Ok((1, 2, 3))); /// # }); /// ``` fn try_join3<Fut2, Fut3>( self, future2: Fut2, future3: Fut3, ) -> TryJoin3<Self, Fut2, Fut3> where Fut2: TryFuture<Error = Self::Error>, Fut3: TryFuture<Error = Self::Error>, Self: Sized, { TryJoin3::new(self, future2, future3) } /// Same as [`try_join`](TryFutureExt::try_join), but with more futures. /// /// # Examples /// /// ``` /// #![feature(async_await, await_macro, futures_api)] /// # futures::executor::block_on(async { /// use futures::future::{self, TryFutureExt}; /// /// let a = future::ready(Ok::<i32, i32>(1)); /// let b = future::ready(Ok::<i32, i32>(2)); /// let c = future::ready(Ok::<i32, i32>(3)); /// let d = future::ready(Ok::<i32, i32>(4)); /// let tuple = a.try_join4(b, c, d); /// /// assert_eq!(await!(tuple), Ok((1, 2, 3, 4))); /// # }); /// ``` fn try_join4<Fut2, Fut3, Fut4>( self, future2: Fut2, future3: Fut3, future4: Fut4, ) -> TryJoin4<Self, Fut2, Fut3, Fut4> where Fut2: TryFuture<Error = Self::Error>, Fut3: TryFuture<Error = Self::Error>, Fut4: TryFuture<Error = Self::Error>, Self: Sized, { TryJoin4::new(self, future2, future3, future4) } /// Same as [`try_join`](TryFutureExt::try_join), but with more futures. /// /// # Examples /// /// ``` /// #![feature(async_await, await_macro, futures_api)] /// # futures::executor::block_on(async { /// use futures::future::{self, TryFutureExt}; /// /// let a = future::ready(Ok::<i32, i32>(1)); /// let b = future::ready(Ok::<i32, i32>(2)); /// let c = future::ready(Ok::<i32, i32>(3)); /// let d = future::ready(Ok::<i32, i32>(4)); /// let e = future::ready(Ok::<i32, i32>(5)); /// let tuple = a.try_join5(b, c, d, e); /// /// assert_eq!(await!(tuple), Ok((1, 2, 3, 4, 5))); /// # }); /// ``` fn try_join5<Fut2, Fut3, Fut4, Fut5>( self, future2: Fut2, future3: Fut3, future4: Fut4, future5: Fut5, ) -> TryJoin5<Self, Fut2, Fut3, Fut4, Fut5> where Fut2: TryFuture<Error = Self::Error>, Fut3: TryFuture<Error = Self::Error>, Fut4: TryFuture<Error = Self::Error>, Fut5: TryFuture<Error = Self::Error>, Self: Sized, { TryJoin5::new(self, future2, future3, future4, future5) } }