1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
use crate::enter;
use futures_core::future::{Future, FutureObj, LocalFutureObj};
use futures_core::stream::{Stream};
use futures_core::task::{Context, Poll, Spawn, LocalSpawn, SpawnError};
use futures_util::task::{waker_ref, ArcWake};
use futures_util::stream::FuturesUnordered;
use futures_util::stream::StreamExt;
use pin_utils::pin_mut;
use std::cell::{RefCell};
use std::ops::{Deref, DerefMut};
use std::prelude::v1::*;
use std::rc::{Rc, Weak};
use std::sync::Arc;
use std::thread::{self, Thread};

/// A single-threaded task pool for polling futures to completion.
///
/// This executor allows you to multiplex any number of tasks onto a single
/// thread. It's appropriate to poll strictly I/O-bound futures that do very
/// little work in between I/O actions.
///
/// To get a handle to the pool that implements
/// [`Spawn`](futures_core::task::Spawn), use the
/// [`spawner()`](LocalPool::spawner) method. Because the executor is
/// single-threaded, it supports a special form of task spawning for non-`Send`
/// futures, via [`spawn_local_obj`](LocalSpawner::spawn_local_obj).
#[derive(Debug)]
pub struct LocalPool {
    pool: FuturesUnordered<LocalFutureObj<'static, ()>>,
    incoming: Rc<Incoming>,
}

/// A handle to a [`LocalPool`](LocalPool) that implements
/// [`Spawn`](futures_core::task::Spawn).
#[derive(Clone, Debug)]
pub struct LocalSpawner {
    incoming: Weak<Incoming>,
}

type Incoming = RefCell<Vec<LocalFutureObj<'static, ()>>>;

pub(crate) struct ThreadNotify {
    thread: Thread
}

thread_local! {
    static CURRENT_THREAD_NOTIFY: Arc<ThreadNotify> = Arc::new(ThreadNotify {
        thread: thread::current(),
    });
}

impl ArcWake for ThreadNotify {
    fn wake_by_ref(arc_self: &Arc<Self>) {
        arc_self.thread.unpark();
    }
}

// Set up and run a basic single-threaded spawner loop, invoking `f` on each
// turn.
fn run_executor<T, F: FnMut(&mut Context<'_>) -> Poll<T>>(mut f: F) -> T {
    let _enter = enter()
        .expect("cannot execute `LocalPool` executor from within \
                 another executor");

    CURRENT_THREAD_NOTIFY.with(|thread_notify| {
        let waker = waker_ref(thread_notify);
        let mut cx = Context::from_waker(&waker);
        loop {
            if let Poll::Ready(t) = f(&mut cx) {
                return t;
            }
            thread::park();
        }
    })
}

impl LocalPool {
    /// Create a new, empty pool of tasks.
    pub fn new() -> LocalPool {
        LocalPool {
            pool: FuturesUnordered::new(),
            incoming: Default::default(),
        }
    }

    /// Get a clonable handle to the pool as a [`Spawn`].
    pub fn spawner(&self) -> LocalSpawner {
        LocalSpawner {
            incoming: Rc::downgrade(&self.incoming)
        }
    }

    /// Run all tasks in the pool to completion.
    ///
    /// The given spawner, `spawn`, is used as the default spawner for any
    /// *newly*-spawned tasks. You can route these additional tasks back into
    /// the `LocalPool` by using its spawner handle:
    ///
    /// ```
    /// use futures::executor::LocalPool;
    ///
    /// let mut pool = LocalPool::new();
    ///
    /// // ... spawn some initial tasks using `spawn.spawn()` or `spawn.spawn_local()`
    ///
    /// // run *all* tasks in the pool to completion, including any newly-spawned ones.
    /// pool.run();
    /// ```
    ///
    /// The function will block the calling thread until *all* tasks in the pool
    /// are complete, including any spawned while running existing tasks.
    pub fn run(&mut self) {
        run_executor(|cx| self.poll_pool(cx))
    }

    /// Runs all the tasks in the pool until the given future completes.
    ///
    /// The given spawner, `spawn`, is used as the default spawner for any
    /// *newly*-spawned tasks. You can route these additional tasks back into
    /// the `LocalPool` by using its spawner handle:
    ///
    /// ```
    /// #![feature(futures_api)]
    /// use futures::executor::LocalPool;
    /// use futures::future::ready;
    ///
    /// let mut pool = LocalPool::new();
    /// # let my_app  = ready(());
    ///
    /// // run tasks in the pool until `my_app` completes, by default spawning
    /// // further tasks back onto the pool
    /// pool.run_until(my_app);
    /// ```
    ///
    /// The function will block the calling thread *only* until the future `f`
    /// completes; there may still be incomplete tasks in the pool, which will
    /// be inert after the call completes, but can continue with further use of
    /// `run` or `run_until`. While the function is running, however, all tasks
    /// in the pool will try to make progress.
    pub fn run_until<F: Future>(&mut self, future: F) -> F::Output {
        pin_mut!(future);

        run_executor(|cx| {
            {
                // if our main task is done, so are we
                let result = future.as_mut().poll(cx);
                if let Poll::Ready(output) = result {
                    return Poll::Ready(output);
                }
            }

            let _ = self.poll_pool(cx);
            Poll::Pending
        })
    }

    // Make maximal progress on the entire pool of spawned task, returning `Ready`
    // if the pool is empty and `Pending` if no further progress can be made.
    fn poll_pool(&mut self, cx: &mut Context<'_>) -> Poll<()> {
        // state for the FuturesUnordered, which will never be used
        loop {
            // empty the incoming queue of newly-spawned tasks
            {
                let mut incoming = self.incoming.borrow_mut();
                for task in incoming.drain(..) {
                    self.pool.push(task)
                }
            }

            let ret = self.pool.poll_next_unpin(cx);
            // we queued up some new tasks; add them and poll again
            if !self.incoming.borrow().is_empty() {
                continue;
            }

            // no queued tasks; we may be done
            match ret {
                Poll::Pending => return Poll::Pending,
                Poll::Ready(None) => return Poll::Ready(()),
                _ => {}
            }
        }
    }
}

impl Default for LocalPool {
    fn default() -> Self {
        Self::new()
    }
}

/// Run a future to completion on the current thread.
///
/// This function will block the caller until the given future has completed.
///
/// Use a [`LocalPool`](LocalPool) if you need finer-grained control over
/// spawned tasks.
pub fn block_on<F: Future>(f: F) -> F::Output {
    pin_mut!(f);
    run_executor(|cx| f.as_mut().poll(cx))
}

/// Turn a stream into a blocking iterator.
///
/// When `next` is called on the resulting `BlockingStream`, the caller
/// will be blocked until the next element of the `Stream` becomes available.
pub fn block_on_stream<S: Stream + Unpin>(stream: S) -> BlockingStream<S> {
    BlockingStream { stream }
}

/// An iterator which blocks on values from a stream until they become available.
#[derive(Debug)]
pub struct BlockingStream<S: Stream + Unpin> { stream: S }

impl<S: Stream + Unpin> Deref for BlockingStream<S> {
    type Target = S;
    fn deref(&self) -> &Self::Target {
        &self.stream
    }
}

impl<S: Stream + Unpin> DerefMut for BlockingStream<S> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.stream
    }
}

impl<S: Stream + Unpin> BlockingStream<S> {
    /// Convert this `BlockingStream` into the inner `Stream` type.
    pub fn into_inner(self) -> S {
        self.stream
    }
}

impl<S: Stream + Unpin> Iterator for BlockingStream<S> {
    type Item = S::Item;
    fn next(&mut self) -> Option<Self::Item> {
        LocalPool::new().run_until(self.stream.next())
    }
}

impl Spawn for LocalSpawner {
    fn spawn_obj(
        &mut self,
        future: FutureObj<'static, ()>,
    ) -> Result<(), SpawnError> {
        if let Some(incoming) = self.incoming.upgrade() {
            incoming.borrow_mut().push(future.into());
            Ok(())
        } else {
            Err(SpawnError::shutdown())
        }
    }

    fn status(&self) -> Result<(), SpawnError> {
        if self.incoming.upgrade().is_some() {
            Ok(())
        } else {
            Err(SpawnError::shutdown())
        }
    }
}

impl LocalSpawn for LocalSpawner {
    fn spawn_local_obj(
        &mut self,
        future: LocalFutureObj<'static, ()>,
    ) -> Result<(), SpawnError> {
        if let Some(incoming) = self.incoming.upgrade() {
            incoming.borrow_mut().push(future);
            Ok(())
        } else {
            Err(SpawnError::shutdown())
        }
    }

    fn status_local(&self) -> Result<(), SpawnError> {
        if self.incoming.upgrade().is_some() {
            Ok(())
        } else {
            Err(SpawnError::shutdown())
        }
    }
}