Files
futures
futures_channel
futures_core
futures_executor
futures_io
futures_select_macro
futures_sink
futures_test
futures_util
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
use crate::stream::FuturesUnordered;
use futures_core::future::Future;
use futures_core::stream::Stream;
use futures_core::task::{Context, Poll};
use pin_utils::unsafe_pinned;
use core::cmp::{Eq, PartialEq, PartialOrd, Ord, Ordering};
use core::fmt::{self, Debug};
use core::iter::FromIterator;
use core::pin::Pin;
use alloc::collections::binary_heap::{BinaryHeap, PeekMut};

#[must_use = "futures do nothing unless polled"]
#[derive(Debug)]
struct OrderWrapper<T> {
    data: T, // A future or a future's output
    index: usize,
}

impl<T> PartialEq for OrderWrapper<T> {
    fn eq(&self, other: &Self) -> bool {
        self.index == other.index
    }
}

impl<T> Eq for OrderWrapper<T> {}

impl<T> PartialOrd for OrderWrapper<T> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<T> Ord for OrderWrapper<T> {
    fn cmp(&self, other: &Self) -> Ordering {
        // BinaryHeap is a max heap, so compare backwards here.
        other.index.cmp(&self.index)
    }
}

impl<T> OrderWrapper<T> {
    unsafe_pinned!(data: T);
}

impl<T> Future for OrderWrapper<T>
    where T: Future
{
    type Output = OrderWrapper<T::Output>;

    fn poll(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
    ) -> Poll<Self::Output> {
        self.as_mut().data().as_mut().poll(cx)
            .map(|output| OrderWrapper { data: output, index: self.index })
    }
}

/// An unbounded queue of futures.
///
/// This "combinator" is similar to `FuturesUnordered`, but it imposes an order
/// on top of the set of futures. While futures in the set will race to
/// completion in parallel, results will only be returned in the order their
/// originating futures were added to the queue.
///
/// Futures are pushed into this queue and their realized values are yielded in
/// order. This structure is optimized to manage a large number of futures.
/// Futures managed by `FuturesOrdered` will only be polled when they generate
/// notifications. This reduces the required amount of work needed to coordinate
/// large numbers of futures.
///
/// When a `FuturesOrdered` is first created, it does not contain any futures.
/// Calling `poll` in this state will result in `Poll::Ready(None))` to be
/// returned. Futures are submitted to the queue using `push`; however, the
/// future will **not** be polled at this point. `FuturesOrdered` will only
/// poll managed futures when `FuturesOrdered::poll` is called. As such, it
/// is important to call `poll` after pushing new futures.
///
/// If `FuturesOrdered::poll` returns `Poll::Ready(None)` this means that
/// the queue is currently not managing any futures. A future may be submitted
/// to the queue at a later time. At that point, a call to
/// `FuturesOrdered::poll` will either return the future's resolved value
/// **or** `Poll::Pending` if the future has not yet completed. When
/// multiple futures are submitted to the queue, `FuturesOrdered::poll` will
/// return `Poll::Pending` until the first future completes, even if
/// some of the later futures have already completed.
///
/// Note that you can create a ready-made `FuturesOrdered` via the
/// [`collect`](Iterator::collect) method, or you can start with an empty queue
/// with the `FuturesOrdered::new` constructor.
#[must_use = "streams do nothing unless polled"]
pub struct FuturesOrdered<T: Future> {
    in_progress_queue: FuturesUnordered<OrderWrapper<T>>,
    queued_outputs: BinaryHeap<OrderWrapper<T::Output>>,
    next_incoming_index: usize,
    next_outgoing_index: usize,
}

impl<T: Future> Unpin for FuturesOrdered<T> {}

impl<Fut: Future> FuturesOrdered<Fut> {
    /// Constructs a new, empty `FuturesOrdered`
    ///
    /// The returned `FuturesOrdered` does not contain any futures and, in this
    /// state, `FuturesOrdered::poll` will return `Ok(Poll::Ready(None))`.
    pub fn new() -> FuturesOrdered<Fut> {
        FuturesOrdered {
            in_progress_queue: FuturesUnordered::new(),
            queued_outputs: BinaryHeap::new(),
            next_incoming_index: 0,
            next_outgoing_index: 0,
        }
    }

    /// Returns the number of futures contained in the queue.
    ///
    /// This represents the total number of in-flight futures, both
    /// those currently processing and those that have completed but
    /// which are waiting for earlier futures to complete.
    pub fn len(&self) -> usize {
        self.in_progress_queue.len() + self.queued_outputs.len()
    }

    /// Returns `true` if the queue contains no futures
    pub fn is_empty(&self) -> bool {
        self.in_progress_queue.is_empty() && self.queued_outputs.is_empty()
    }

    /// Push a future into the queue.
    ///
    /// This function submits the given future to the internal set for managing.
    /// This function will not call `poll` on the submitted future. The caller
    /// must ensure that `FuturesOrdered::poll` is called in order to receive
    /// task notifications.
    pub fn push(&mut self, future: Fut) {
        let wrapped = OrderWrapper {
            data: future,
            index: self.next_incoming_index,
        };
        self.next_incoming_index += 1;
        self.in_progress_queue.push(wrapped);
    }
}

impl<Fut: Future> Default for FuturesOrdered<Fut> {
    fn default() -> FuturesOrdered<Fut> {
        FuturesOrdered::new()
    }
}

impl<Fut: Future> Stream for FuturesOrdered<Fut> {
    type Item = Fut::Output;

    fn poll_next(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>
    ) -> Poll<Option<Self::Item>> {
        let this = &mut *self;

        // Check to see if we've already received the next value
        if let Some(next_output) = this.queued_outputs.peek_mut() {
            if next_output.index == this.next_outgoing_index {
                this.next_outgoing_index += 1;
                return Poll::Ready(Some(PeekMut::pop(next_output).data));
            }
        }

        loop {
            match Pin::new(&mut this.in_progress_queue).poll_next(cx) {
                Poll::Ready(Some(output)) => {
                    if output.index == this.next_outgoing_index {
                        this.next_outgoing_index += 1;
                        return Poll::Ready(Some(output.data));
                    } else {
                        this.queued_outputs.push(output)
                    }
                }
                Poll::Ready(None) => return Poll::Ready(None),
                Poll::Pending => return Poll::Pending,
            }
        }
    }
}

impl<Fut: Future> Debug for FuturesOrdered<Fut> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(fmt, "FuturesOrdered {{ ... }}")
    }
}

impl<Fut: Future> FromIterator<Fut> for FuturesOrdered<Fut> {
    fn from_iter<T>(iter: T) -> Self
    where
        T: IntoIterator<Item = Fut>,
    {
        let acc = FuturesOrdered::new();
        iter.into_iter().fold(acc, |mut acc, item| { acc.push(item); acc })
    }
}