1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
//! A "mutex" which only supports `try_lock` //! //! As a futures library the eventual call to an event loop should be the only //! thing that ever blocks, so this is assisted with a fast user-space //! implementation of a lock that can only have a `try_lock` operation. use core::cell::UnsafeCell; use core::ops::{Deref, DerefMut}; use core::sync::atomic::Ordering::SeqCst; use core::sync::atomic::AtomicBool; /// A "mutex" around a value, similar to `std::sync::Mutex<T>`. /// /// This lock only supports the `try_lock` operation, however, and does not /// implement poisoning. #[derive(Debug)] pub(crate) struct Lock<T> { locked: AtomicBool, data: UnsafeCell<T>, } /// Sentinel representing an acquired lock through which the data can be /// accessed. pub(crate) struct TryLock<'a, T> { __ptr: &'a Lock<T>, } // The `Lock` structure is basically just a `Mutex<T>`, and these two impls are // intended to mirror the standard library's corresponding impls for `Mutex<T>`. // // If a `T` is sendable across threads, so is the lock, and `T` must be sendable // across threads to be `Sync` because it allows mutable access from multiple // threads. unsafe impl<T: Send> Send for Lock<T> {} unsafe impl<T: Send> Sync for Lock<T> {} impl<T> Lock<T> { /// Creates a new lock around the given value. pub(crate) fn new(t: T) -> Lock<T> { Lock { locked: AtomicBool::new(false), data: UnsafeCell::new(t), } } /// Attempts to acquire this lock, returning whether the lock was acquired or /// not. /// /// If `Some` is returned then the data this lock protects can be accessed /// through the sentinel. This sentinel allows both mutable and immutable /// access. /// /// If `None` is returned then the lock is already locked, either elsewhere /// on this thread or on another thread. pub(crate) fn try_lock(&self) -> Option<TryLock<'_, T>> { if !self.locked.swap(true, SeqCst) { Some(TryLock { __ptr: self }) } else { None } } } impl<T> Deref for TryLock<'_, T> { type Target = T; fn deref(&self) -> &T { // The existence of `TryLock` represents that we own the lock, so we // can safely access the data here. unsafe { &*self.__ptr.data.get() } } } impl<T> DerefMut for TryLock<'_, T> { fn deref_mut(&mut self) -> &mut T { // The existence of `TryLock` represents that we own the lock, so we // can safely access the data here. // // Additionally, we're the *only* `TryLock` in existence so mutable // access should be ok. unsafe { &mut *self.__ptr.data.get() } } } impl<T> Drop for TryLock<'_, T> { fn drop(&mut self) { self.__ptr.locked.store(false, SeqCst); } } #[cfg(test)] mod tests { use super::Lock; #[test] fn smoke() { let a = Lock::new(1); let mut a1 = a.try_lock().unwrap(); assert!(a.try_lock().is_none()); assert_eq!(*a1, 1); *a1 = 2; drop(a1); assert_eq!(*a.try_lock().unwrap(), 2); assert_eq!(*a.try_lock().unwrap(), 2); } }