1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
//! An unbounded set of futures. //! //! This module is only available when the `std` or `alloc` feature of this //! library is activated, and it is activated by default. use crate::task::{AtomicWaker}; use futures_core::future::{Future, FutureObj, LocalFutureObj}; use futures_core::stream::{FusedStream, Stream}; use futures_core::task::{Context, Poll, Spawn, LocalSpawn, SpawnError}; use core::cell::UnsafeCell; use core::fmt::{self, Debug}; use core::iter::FromIterator; use core::marker::PhantomData; use core::mem; use core::pin::Pin; use core::ptr; use core::sync::atomic::Ordering::SeqCst; use core::sync::atomic::{AtomicPtr, AtomicBool}; use alloc::sync::{Arc, Weak}; mod abort; mod iter; pub use self::iter::{IterMut, IterPinMut}; mod task; use self::task::Task; mod ready_to_run_queue; use self::ready_to_run_queue::{ReadyToRunQueue, Dequeue}; /// Constant used for a `FuturesUnordered` to indicate we are empty and have /// yielded a `None` element so can return `true` from /// `FusedStream::is_terminated` /// /// It is safe to not check for this when incrementing as even a ZST future will /// have a `Task` allocated for it, so we cannot ever reach usize::max_value() /// without running out of ram. const TERMINATED_SENTINEL_LENGTH: usize = usize::max_value(); /// A set of futures which may complete in any order. /// /// This structure is optimized to manage a large number of futures. /// Futures managed by [`FuturesUnordered`] will only be polled when they /// generate wake-up notifications. This reduces the required amount of work /// needed to poll large numbers of futures. /// /// [`FuturesUnordered`] can be filled by [`collect`](Iterator::collect)ing an /// iterator of futures into a [`FuturesUnordered`], or by /// [`push`](FuturesUnordered::push)ing futures onto an existing /// [`FuturesUnordered`]. When new futures are added, /// [`poll_next`](Stream::poll_next) must be called in order to begin receiving /// wake-ups for new futures. /// /// Note that you can create a ready-made [`FuturesUnordered`] via the /// [`collect`](Iterator::collect) method, or you can start with an empty set /// with the [`FuturesUnordered::new`] constructor. /// /// This type is only available when the `std` or `alloc` feature of this /// library is activated, and it is activated by default. #[must_use = "streams do nothing unless polled"] pub struct FuturesUnordered<Fut> { ready_to_run_queue: Arc<ReadyToRunQueue<Fut>>, len: usize, head_all: *const Task<Fut>, } unsafe impl<Fut: Send> Send for FuturesUnordered<Fut> {} unsafe impl<Fut: Sync> Sync for FuturesUnordered<Fut> {} impl<Fut> Unpin for FuturesUnordered<Fut> {} impl Spawn for FuturesUnordered<FutureObj<'_, ()>> { fn spawn_obj(&mut self, future_obj: FutureObj<'static, ()>) -> Result<(), SpawnError> { self.push(future_obj); Ok(()) } } impl LocalSpawn for FuturesUnordered<LocalFutureObj<'_, ()>> { fn spawn_local_obj(&mut self, future_obj: LocalFutureObj<'static, ()>) -> Result<(), SpawnError> { self.push(future_obj); Ok(()) } } // FuturesUnordered is implemented using two linked lists. One which links all // futures managed by a `FuturesUnordered` and one that tracks futures that have // been scheduled for polling. The first linked list is not thread safe and is // only accessed by the thread that owns the `FuturesUnordered` value. The // second linked list is an implementation of the intrusive MPSC queue algorithm // described by 1024cores.net. // // When a future is submitted to the set, a task is allocated and inserted in // both linked lists. The next call to `poll_next` will (eventually) see this // task and call `poll` on the future. // // Before a managed future is polled, the current context's waker is replaced // with one that is aware of the specific future being run. This ensures that // wake-up notifications generated by that specific future are visible to // `FuturesUnordered`. When a wake-up notification is received, the task is // inserted into the ready to run queue, so that its future can be polled later. // // Each task is wrapped in an `Arc` and thereby atomically reference counted. // Also, each task contains an `AtomicBool` which acts as a flag that indicates // whether the task is currently inserted in the atomic queue. When a wake-up // notifiaction is received, the task will only be inserted into the ready to // run queue if it isn't inserted already. impl<Fut: Future> FuturesUnordered<Fut> { /// Constructs a new, empty [`FuturesUnordered`]. /// /// The returned [`FuturesUnordered`] does not contain any futures. /// In this state, [`FuturesUnordered::poll_next`](Stream::poll_next) will /// return [`Poll::Ready(None)`](Poll::Ready). pub fn new() -> FuturesUnordered<Fut> { let stub = Arc::new(Task { future: UnsafeCell::new(None), next_all: UnsafeCell::new(ptr::null()), prev_all: UnsafeCell::new(ptr::null()), next_ready_to_run: AtomicPtr::new(ptr::null_mut()), queued: AtomicBool::new(true), ready_to_run_queue: Weak::new(), }); let stub_ptr = &*stub as *const Task<Fut>; let ready_to_run_queue = Arc::new(ReadyToRunQueue { waker: AtomicWaker::new(), head: AtomicPtr::new(stub_ptr as *mut _), tail: UnsafeCell::new(stub_ptr), stub, }); FuturesUnordered { len: 0, head_all: ptr::null_mut(), ready_to_run_queue, } } } impl<Fut: Future> Default for FuturesUnordered<Fut> { fn default() -> FuturesUnordered<Fut> { FuturesUnordered::new() } } impl<Fut> FuturesUnordered<Fut> { /// Returns the number of futures contained in the set. /// /// This represents the total number of in-flight futures. pub fn len(&self) -> usize { if self.len == TERMINATED_SENTINEL_LENGTH { 0 } else { self.len } } /// Returns `true` if the set contains no futures. pub fn is_empty(&self) -> bool { self.len == 0 || self.len == TERMINATED_SENTINEL_LENGTH } /// Push a future into the set. /// /// This method adds the given future to the set. This method will not /// call [`poll`](core::future::Future::poll) on the submitted future. The caller must /// ensure that [`FuturesUnordered::poll_next`](Stream::poll_next) is called /// in order to receive wake-up notifications for the given future. pub fn push(&mut self, future: Fut) { let task = Arc::new(Task { future: UnsafeCell::new(Some(future)), next_all: UnsafeCell::new(ptr::null_mut()), prev_all: UnsafeCell::new(ptr::null_mut()), next_ready_to_run: AtomicPtr::new(ptr::null_mut()), queued: AtomicBool::new(true), ready_to_run_queue: Arc::downgrade(&self.ready_to_run_queue), }); // If we've previously marked ourselves as terminated we need to reset // len to 0 to track it correctly if self.len == TERMINATED_SENTINEL_LENGTH { self.len = 0; } // Right now our task has a strong reference count of 1. We transfer // ownership of this reference count to our internal linked list // and we'll reclaim ownership through the `unlink` method below. let ptr = self.link(task); // We'll need to get the future "into the system" to start tracking it, // e.g. getting its wake-up notifications going to us tracking which // futures are ready. To do that we unconditionally enqueue it for // polling here. self.ready_to_run_queue.enqueue(ptr); } /// Returns an iterator that allows modifying each future in the set. pub fn iter_mut(&mut self) -> IterMut<'_, Fut> where Fut: Unpin { IterMut(Pin::new(self).iter_pin_mut()) } /// Returns an iterator that allows modifying each future in the set. pub fn iter_pin_mut(self: Pin<&mut Self>) -> IterPinMut<'_, Fut> { IterPinMut { task: self.head_all, len: self.len(), _marker: PhantomData } } /// Releases the task. It destorys the future inside and either drops /// the `Arc<Task>` or transfers ownership to the ready to run queue. /// The task this method is called on must have been unlinked before. fn release_task(&mut self, task: Arc<Task<Fut>>) { // `release_task` must only be called on unlinked tasks unsafe { debug_assert!((*task.next_all.get()).is_null()); debug_assert!((*task.prev_all.get()).is_null()); } // The future is done, try to reset the queued flag. This will prevent // `wake` from doing any work in the future let prev = task.queued.swap(true, SeqCst); // Drop the future, even if it hasn't finished yet. This is safe // because we're dropping the future on the thread that owns // `FuturesUnordered`, which correctly tracks `Fut`'s lifetimes and // such. unsafe { // Set to `None` rather than `take()`ing to prevent moving the // future. *task.future.get() = None; } // If the queued flag was previously set, then it means that this task // is still in our internal ready to run queue. We then transfer // ownership of our reference count to the ready to run queue, and it'll // come along and free it later, noticing that the future is `None`. // // If, however, the queued flag was *not* set then we're safe to // release our reference count on the task. The queued flag was set // above so all future `enqueue` operations will not actually // enqueue the task, so our task will never see the ready to run queue // again. The task itself will be deallocated once all reference counts // have been dropped elsewhere by the various wakers that contain it. if prev { mem::forget(task); } } /// Insert a new task into the internal linked list. fn link(&mut self, task: Arc<Task<Fut>>) -> *const Task<Fut> { let ptr = Arc::into_raw(task); unsafe { *(*ptr).next_all.get() = self.head_all; if !self.head_all.is_null() { *(*self.head_all).prev_all.get() = ptr; } } self.head_all = ptr; self.len += 1; ptr } /// Remove the task from the linked list tracking all tasks currently /// managed by `FuturesUnordered`. /// This method is unsafe because it has be guaranteed that `task` is a /// valid pointer. unsafe fn unlink(&mut self, task: *const Task<Fut>) -> Arc<Task<Fut>> { let task = Arc::from_raw(task); let next = *task.next_all.get(); let prev = *task.prev_all.get(); *task.next_all.get() = ptr::null_mut(); *task.prev_all.get() = ptr::null_mut(); if !next.is_null() { *(*next).prev_all.get() = prev; } if !prev.is_null() { *(*prev).next_all.get() = next; } else { self.head_all = next; } self.len -= 1; task } } impl<Fut: Future> Stream for FuturesUnordered<Fut> { type Item = Fut::Output; fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> { // Ensure `parent` is correctly set. self.ready_to_run_queue.waker.register(cx.waker()); loop { // Safety: &mut self guarantees the mutual exclusion `dequeue` // expects let task = match unsafe { self.ready_to_run_queue.dequeue() } { Dequeue::Empty => { if self.is_empty() { // We can only consider ourselves terminated once we // have yielded a `None` self.len = TERMINATED_SENTINEL_LENGTH; return Poll::Ready(None); } else { return Poll::Pending; } } Dequeue::Inconsistent => { // At this point, it may be worth yielding the thread & // spinning a few times... but for now, just yield using the // task system. cx.waker().wake_by_ref(); return Poll::Pending; } Dequeue::Data(task) => task, }; debug_assert!(task != self.ready_to_run_queue.stub()); // Safety: // - `task` is a valid pointer. // - We are the only thread that accesses the `UnsafeCell` that // contains the future let future = match unsafe { &mut *(*task).future.get() } { Some(future) => future, // If the future has already gone away then we're just // cleaning out this task. See the comment in // `release_task` for more information, but we're basically // just taking ownership of our reference count here. None => { // This case only happens when `release_task` was called // for this task before and couldn't drop the task // because it was already enqueued in the ready to run // queue. // Safety: `task` is a valid pointer let task = unsafe { Arc::from_raw(task) }; // Double check that the call to `release_task` really // happened. Calling it required the task to be unlinked. unsafe { debug_assert!((*task.next_all.get()).is_null()); debug_assert!((*task.prev_all.get()).is_null()); } continue } }; // Safety: `task` is a valid pointer let task = unsafe { self.unlink(task) }; // Unset queued flag: This must be done before polling to ensure // that the future's task gets rescheduled if it sends a wake-up // notification **during** the call to `poll`. let prev = task.queued.swap(false, SeqCst); assert!(prev); // We're going to need to be very careful if the `poll` // method below panics. We need to (a) not leak memory and // (b) ensure that we still don't have any use-after-frees. To // manage this we do a few things: // // * A "bomb" is created which if dropped abnormally will call // `release_task`. That way we'll be sure the memory management // of the `task` is managed correctly. In particular // `release_task` will drop the future. This ensures that it is // dropped on this thread and not accidentally on a different // thread (bad). // * We unlink the task from our internal queue to preemptively // assume it'll panic, in which case we'll want to discard it // regardless. struct Bomb<'a, Fut> { queue: &'a mut FuturesUnordered<Fut>, task: Option<Arc<Task<Fut>>>, } impl<Fut> Drop for Bomb<'_, Fut> { fn drop(&mut self) { if let Some(task) = self.task.take() { self.queue.release_task(task); } } } let mut bomb = Bomb { task: Some(task), queue: &mut *self, }; // Poll the underlying future with the appropriate waker // implementation. This is where a large bit of the unsafety // starts to stem from internally. The waker is basically just // our `Arc<Task<Fut>>` and can schedule the future for polling by // enqueuing itself in the ready to run queue. // // Critically though `Task<Fut>` won't actually access `Fut`, the // future, while it's floating around inside of wakers. // These structs will basically just use `Fut` to size // the internal allocation, appropriately accessing fields and // deallocating the task if need be. let res = { let waker = Task::waker_ref(bomb.task.as_ref().unwrap()); let mut cx = Context::from_waker(&waker); // Safety: We won't move the future ever again let future = unsafe { Pin::new_unchecked(future) }; future.poll(&mut cx) }; match res { Poll::Pending => { let task = bomb.task.take().unwrap(); bomb.queue.link(task); continue } Poll::Ready(output) => { return Poll::Ready(Some(output)) } } } } } impl<Fut> Debug for FuturesUnordered<Fut> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "FuturesUnordered {{ ... }}") } } impl<Fut> Drop for FuturesUnordered<Fut> { fn drop(&mut self) { // When a `FuturesUnordered` is dropped we want to drop all futures // associated with it. At the same time though there may be tons of // wakers flying around which contain `Task<Fut>` references // inside them. We'll let those naturally get deallocated. unsafe { while !self.head_all.is_null() { let head = self.head_all; let task = self.unlink(head); self.release_task(task); } } // Note that at this point we could still have a bunch of tasks in the // ready to run queue. None of those tasks, however, have futures // associated with them so they're safe to destroy on any thread. At // this point the `FuturesUnordered` struct, the owner of the one strong // reference to the ready to run queue will drop the strong reference. // At that point whichever thread releases the strong refcount last (be // it this thread or some other thread as part of an `upgrade`) will // clear out the ready to run queue and free all remaining tasks. // // While that freeing operation isn't guaranteed to happen here, it's // guaranteed to happen "promptly" as no more "blocking work" will // happen while there's a strong refcount held. } } impl<Fut: Future> FromIterator<Fut> for FuturesUnordered<Fut> { fn from_iter<I>(iter: I) -> Self where I: IntoIterator<Item = Fut>, { let acc = FuturesUnordered::new(); iter.into_iter().fold(acc, |mut acc, item| { acc.push(item); acc }) } } impl<Fut: Future> FusedStream for FuturesUnordered<Fut> { fn is_terminated(&self) -> bool { self.len == TERMINATED_SENTINEL_LENGTH } }