1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
//! Futures //! //! This module contains a number of functions for working with `Future`s, //! including the `FutureExt` trait which adds methods to `Future` types. use core::pin::Pin; use futures_core::stream::Stream; use futures_core::task::{Context, Poll}; #[cfg(feature = "alloc")] use alloc::boxed::Box; pub use futures_core::future::{FusedFuture, Future}; #[cfg(feature = "alloc")] pub use futures_core::future::{BoxFuture, LocalBoxFuture}; // Primitive futures mod lazy; pub use self::lazy::{lazy, Lazy}; mod pending; pub use self::pending::{pending, Pending}; mod maybe_done; pub use self::maybe_done::{maybe_done, MaybeDone}; mod option; pub use self::option::{OptionFuture}; mod poll_fn; pub use self::poll_fn::{poll_fn, PollFn}; mod ready; pub use self::ready::{ready, ok, err, Ready}; mod join; pub use self::join::{join, join3, join4, join5, Join, Join3, Join4, Join5}; #[cfg(feature = "alloc")] mod join_all; #[cfg(feature = "alloc")] pub use self::join_all::{join_all, JoinAll}; mod select; pub use self::select::{select, Select}; #[cfg(feature = "alloc")] mod select_all; #[cfg(feature = "alloc")] pub use self::select_all::{select_all, SelectAll}; // Combinators mod flatten; pub use self::flatten::Flatten; mod flatten_stream; pub use self::flatten_stream::FlattenStream; mod fuse; pub use self::fuse::Fuse; mod into_stream; pub use self::into_stream::IntoStream; mod map; pub use self::map::Map; mod then; pub use self::then::Then; mod inspect; pub use self::inspect::Inspect; mod unit_error; pub use self::unit_error::UnitError; mod never_error; pub use self::never_error::NeverError; mod either; pub use self::either::Either; // Implementation details mod chain; pub(crate) use self::chain::Chain; cfg_target_has_atomic! { #[cfg(feature = "alloc")] mod abortable; #[cfg(feature = "alloc")] pub use self::abortable::{abortable, Abortable, AbortHandle, AbortRegistration, Aborted}; } #[cfg(feature = "std")] mod catch_unwind; #[cfg(feature = "std")] pub use self::catch_unwind::CatchUnwind; #[cfg(feature = "channel")] #[cfg(feature = "std")] mod remote_handle; #[cfg(feature = "channel")] #[cfg(feature = "std")] pub use self::remote_handle::{Remote, RemoteHandle}; #[cfg(feature = "std")] mod shared; #[cfg(feature = "std")] pub use self::shared::Shared; impl<T: ?Sized> FutureExt for T where T: Future {} /// An extension trait for `Future`s that provides a variety of convenient /// adapters. pub trait FutureExt: Future { /// Map this future's output to a different type, returning a new future of /// the resulting type. /// /// This function is similar to the `Option::map` or `Iterator::map` where /// it will change the type of the underlying future. This is useful to /// chain along a computation once a future has been resolved. /// /// Note that this function consumes the receiving future and returns a /// wrapped version of it, similar to the existing `map` methods in the /// standard library. /// /// # Examples /// /// ``` /// # futures::executor::block_on(async { /// use futures::future::FutureExt; /// /// let future = async { 1 }; /// let new_future = future.map(|x| x + 3); /// assert_eq!(new_future.await, 4); /// # }); /// ``` fn map<U, F>(self, f: F) -> Map<Self, F> where F: FnOnce(Self::Output) -> U, Self: Sized, { assert_future::<U, _>(Map::new(self, f)) } /// Chain on a computation for when a future finished, passing the result of /// the future to the provided closure `f`. /// /// The returned value of the closure must implement the `Future` trait /// and can represent some more work to be done before the composed future /// is finished. /// /// The closure `f` is only run *after* successful completion of the `self` /// future. /// /// Note that this function consumes the receiving future and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// # futures::executor::block_on(async { /// use futures::future::FutureExt; /// /// let future_of_1 = async { 1 }; /// let future_of_4 = future_of_1.then(|x| async move { x + 3 }); /// assert_eq!(future_of_4.await, 4); /// # }); /// ``` fn then<Fut, F>(self, f: F) -> Then<Self, Fut, F> where F: FnOnce(Self::Output) -> Fut, Fut: Future, Self: Sized, { assert_future::<Fut::Output, _>(Then::new(self, f)) } /// Wrap this future in an `Either` future, making it the left-hand variant /// of that `Either`. /// /// This can be used in combination with the `right_future` method to write `if` /// statements that evaluate to different futures in different branches. /// /// # Examples /// /// ``` /// # futures::executor::block_on(async { /// use futures::future::FutureExt; /// /// let x = 6; /// let future = if x < 10 { /// async { true }.left_future() /// } else { /// async { false }.right_future() /// }; /// /// assert_eq!(future.await, true); /// # }); /// ``` fn left_future<B>(self) -> Either<Self, B> where B: Future<Output = Self::Output>, Self: Sized { Either::Left(self) } /// Wrap this future in an `Either` future, making it the right-hand variant /// of that `Either`. /// /// This can be used in combination with the `left_future` method to write `if` /// statements that evaluate to different futures in different branches. /// /// # Examples /// /// ``` /// # futures::executor::block_on(async { /// use futures::future::FutureExt; /// /// let x = 6; /// let future = if x > 10 { /// async { true }.left_future() /// } else { /// async { false }.right_future() /// }; /// /// assert_eq!(future.await, false); /// # }); /// ``` fn right_future<A>(self) -> Either<A, Self> where A: Future<Output = Self::Output>, Self: Sized, { Either::Right(self) } /// Convert this future into a single element stream. /// /// The returned stream contains single success if this future resolves to /// success or single error if this future resolves into error. /// /// # Examples /// /// ``` /// # futures::executor::block_on(async { /// use futures::future::FutureExt; /// use futures::stream::StreamExt; /// /// let future = async { 17 }; /// let stream = future.into_stream(); /// let collected: Vec<_> = stream.collect().await; /// assert_eq!(collected, vec![17]); /// # }); /// ``` fn into_stream(self) -> IntoStream<Self> where Self: Sized { IntoStream::new(self) } /// Flatten the execution of this future when the successful result of this /// future is itself another future. /// /// This can be useful when combining futures together to flatten the /// computation out the final result. This method can only be called /// when the successful result of this future itself implements the /// `IntoFuture` trait and the error can be created from this future's error /// type. /// /// This method is roughly equivalent to `self.and_then(|x| x)`. /// /// Note that this function consumes the receiving future and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// # futures::executor::block_on(async { /// use futures::future::FutureExt; /// /// let nested_future = async { async { 1 } }; /// let future = nested_future.flatten(); /// assert_eq!(future.await, 1); /// # }); /// ``` fn flatten(self) -> Flatten<Self> where Self::Output: Future, Self: Sized { let f = Flatten::new(self); assert_future::<<<Self as Future>::Output as Future>::Output, _>(f) } /// Flatten the execution of this future when the successful result of this /// future is a stream. /// /// This can be useful when stream initialization is deferred, and it is /// convenient to work with that stream as if stream was available at the /// call site. /// /// Note that this function consumes this future and returns a wrapped /// version of it. /// /// # Examples /// /// ``` /// # futures::executor::block_on(async { /// use futures::future::FutureExt; /// use futures::stream::{self, StreamExt}; /// /// let stream_items = vec![17, 18, 19]; /// let future_of_a_stream = async { stream::iter(stream_items) }; /// /// let stream = future_of_a_stream.flatten_stream(); /// let list: Vec<_> = stream.collect().await; /// assert_eq!(list, vec![17, 18, 19]); /// # }); /// ``` fn flatten_stream(self) -> FlattenStream<Self> where Self::Output: Stream, Self: Sized { FlattenStream::new(self) } /// Fuse a future such that `poll` will never again be called once it has /// completed. This method can be used to turn any `Future` into a /// `FusedFuture`. /// /// Normally, once a future has returned `Poll::Ready` from `poll`, /// any further calls could exhibit bad behavior such as blocking /// forever, panicking, never returning, etc. If it is known that `poll` /// may be called too often then this method can be used to ensure that it /// has defined semantics. /// /// If a `fuse`d future is `poll`ed after having returned `Poll::Ready` /// previously, it will return `Poll::Pending`, from `poll` again (and will /// continue to do so for all future calls to `poll`). /// /// This combinator will drop the underlying future as soon as it has been /// completed to ensure resources are reclaimed as soon as possible. fn fuse(self) -> Fuse<Self> where Self: Sized { let f = Fuse::new(self); assert_future::<Self::Output, _>(f) } /// Do something with the output of a future before passing it on. /// /// When using futures, you'll often chain several of them together. While /// working on such code, you might want to check out what's happening at /// various parts in the pipeline, without consuming the intermediate /// value. To do that, insert a call to `inspect`. /// /// # Examples /// /// ``` /// # futures::executor::block_on(async { /// use futures::future::FutureExt; /// /// let future = async { 1 }; /// let new_future = future.inspect(|&x| println!("about to resolve: {}", x)); /// assert_eq!(new_future.await, 1); /// # }); /// ``` fn inspect<F>(self, f: F) -> Inspect<Self, F> where F: FnOnce(&Self::Output), Self: Sized, { assert_future::<Self::Output, _>(Inspect::new(self, f)) } /// Catches unwinding panics while polling the future. /// /// In general, panics within a future can propagate all the way out to the /// task level. This combinator makes it possible to halt unwinding within /// the future itself. It's most commonly used within task executors. It's /// not recommended to use this for error handling. /// /// Note that this method requires the `UnwindSafe` bound from the standard /// library. This isn't always applied automatically, and the standard /// library provides an `AssertUnwindSafe` wrapper type to apply it /// after-the fact. To assist using this method, the `Future` trait is also /// implemented for `AssertUnwindSafe<F>` where `F` implements `Future`. /// /// This method is only available when the `std` feature of this /// library is activated, and it is activated by default. /// /// # Examples /// /// ``` /// # futures::executor::block_on(async { /// use futures::future::{self, FutureExt, Ready}; /// /// let future = future::ready(2); /// assert!(future.catch_unwind().await.is_ok()); /// /// let future = future::lazy(|_| -> Ready<i32> { /// unimplemented!() /// }); /// assert!(future.catch_unwind().await.is_err()); /// # }); /// ``` #[cfg(feature = "std")] fn catch_unwind(self) -> CatchUnwind<Self> where Self: Sized + ::std::panic::UnwindSafe { CatchUnwind::new(self) } /// Create a cloneable handle to this future where all handles will resolve /// to the same result. /// /// The `shared` combinator method provides a method to convert any future /// into a cloneable future. It enables a future to be polled by multiple /// threads. /// /// This method is only available when the `std` feature of this /// library is activated, and it is activated by default. /// /// # Examples /// /// ``` /// # futures::executor::block_on(async { /// use futures::future::FutureExt; /// /// let future = async { 6 }; /// let shared1 = future.shared(); /// let shared2 = shared1.clone(); /// /// assert_eq!(6, shared1.await); /// assert_eq!(6, shared2.await); /// # }); /// ``` /// /// ``` /// // Note, unlike most examples this is written in the context of a /// // synchronous function to better illustrate the cross-thread aspect of /// // the `shared` combinator. /// /// # futures::executor::block_on(async { /// use futures::future::FutureExt; /// use futures::executor::block_on; /// use std::thread; /// /// let future = async { 6 }; /// let shared1 = future.shared(); /// let shared2 = shared1.clone(); /// let join_handle = thread::spawn(move || { /// assert_eq!(6, block_on(shared2)); /// }); /// assert_eq!(6, shared1.await); /// join_handle.join().unwrap(); /// # }); /// ``` #[cfg(feature = "std")] fn shared(self) -> Shared<Self> where Self: Sized, Self::Output: Clone, { Shared::new(self) } /// Turn this future into a future that yields `()` on completion and sends /// its output to another future on a separate task. /// /// This can be used with spawning executors to easily retrieve the result /// of a future executing on a separate task or thread. /// /// This method is only available when the `std` feature of this /// library is activated, and it is activated by default. #[cfg(feature = "channel")] #[cfg(feature = "std")] fn remote_handle(self) -> (Remote<Self>, RemoteHandle<Self::Output>) where Self: Sized, { remote_handle::remote_handle(self) } /// Wrap the future in a Box, pinning it. /// /// This method is only available when the `std` or `alloc` feature of this /// library is activated, and it is activated by default. #[cfg(feature = "alloc")] fn boxed<'a>(self) -> BoxFuture<'a, Self::Output> where Self: Sized + Send + 'a { Box::pin(self) } /// Wrap the future in a Box, pinning it. /// /// Similar to `boxed`, but without the `Send` requirement. /// /// This method is only available when the `std` or `alloc` feature of this /// library is activated, and it is activated by default. #[cfg(feature = "alloc")] fn boxed_local<'a>(self) -> LocalBoxFuture<'a, Self::Output> where Self: Sized + 'a { Box::pin(self) } /// Turns a [`Future<Output = T>`](Future) into a /// [`TryFuture<Ok = T, Error = ()`>](futures_core::future::TryFuture). fn unit_error(self) -> UnitError<Self> where Self: Sized { UnitError::new(self) } /// Turns a [`Future<Output = T>`](Future) into a /// [`TryFuture<Ok = T, Error = Never`>](futures_core::future::TryFuture). fn never_error(self) -> NeverError<Self> where Self: Sized { NeverError::new(self) } /// A convenience for calling `Future::poll` on `Unpin` future types. fn poll_unpin(&mut self, cx: &mut Context<'_>) -> Poll<Self::Output> where Self: Unpin { Pin::new(self).poll(cx) } /// Evaluates and consumes the future, returning the resulting output if /// the future is ready after the first call to `Future::poll`. /// /// If `poll` instead returns `Poll::Pending`, `None` is returned. /// /// This method is useful in cases where immediacy is more important than /// waiting for a result. It is also convenient for quickly obtaining /// the value of a future that is known to always resolve immediately. /// /// # Examples /// /// ``` /// # use futures::prelude::*; /// use futures::{future::ready, future::pending}; /// let future_ready = ready("foobar"); /// let future_pending = pending::<&'static str>(); /// /// assert_eq!(future_ready.now_or_never(), Some("foobar")); /// assert_eq!(future_pending.now_or_never(), None); /// ``` /// /// In cases where it is absolutely known that a future should always /// resolve immediately and never return `Poll::Pending`, this method can /// be combined with `expect()`: /// /// ``` /// # use futures::{prelude::*, future::ready}; /// let future_ready = ready("foobar"); /// /// assert_eq!(future_ready.now_or_never().expect("Future not ready"), "foobar"); /// ``` fn now_or_never(mut self) -> Option<Self::Output> where Self: Sized { let noop_waker = crate::task::noop_waker(); let mut cx = Context::from_waker(&noop_waker); // SAFETY: This is safe because this method consumes the future, so `poll` is // only going to be called once. Thus it doesn't matter to us if the // future is `Unpin` or not. let pinned = unsafe { Pin::new_unchecked(&mut self) }; match pinned.poll(&mut cx) { Poll::Ready(x) => Some(x), _ => None, } } } // Just a helper function to ensure the futures we're returning all have the // right implementations. fn assert_future<T, F>(future: F) -> F where F: Future<Output=T>, { future }