1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
//! Futures
//!
//! This module contains a number of functions for working with `Future`s,
//! including the `FutureExt` trait which adds methods to `Future` types.

use core::pin::Pin;
use futures_core::stream::TryStream;
use futures_core::task::{Context, Poll};
#[cfg(feature = "sink")]
use futures_sink::Sink;

#[cfg(feature = "compat")] use crate::compat::Compat;

pub use futures_core::future::TryFuture;

mod try_join;
pub use self::try_join::{
    try_join, try_join3, try_join4, try_join5,
    TryJoin, TryJoin3, TryJoin4, TryJoin5,
};

#[cfg(feature = "alloc")]
mod try_join_all;
#[cfg(feature = "alloc")]
pub use self::try_join_all::{try_join_all, TryJoinAll};

mod try_select;
pub use self::try_select::{try_select, TrySelect};

#[cfg(feature = "alloc")]
mod select_ok;
#[cfg(feature = "alloc")]
pub use self::select_ok::{select_ok, SelectOk};

// Combinators
mod and_then;
pub use self::and_then::AndThen;

mod err_into;
pub use self::err_into::ErrInto;

#[cfg(feature = "sink")]
mod flatten_sink;
#[cfg(feature = "sink")]
pub use self::flatten_sink::FlattenSink;

mod inspect_ok;
pub use self::inspect_ok::InspectOk;

mod inspect_err;
pub use self::inspect_err::InspectErr;

mod into_future;
pub use self::into_future::IntoFuture;

mod map_err;
pub use self::map_err::MapErr;

mod map_ok;
pub use self::map_ok::MapOk;

mod or_else;
pub use self::or_else::OrElse;

mod try_flatten_stream;
pub use self::try_flatten_stream::TryFlattenStream;

mod unwrap_or_else;
pub use self::unwrap_or_else::UnwrapOrElse;

// Implementation details
mod flatten_stream_sink;
pub(crate) use self::flatten_stream_sink::FlattenStreamSink;

mod try_chain;
pub(crate) use self::try_chain::{TryChain, TryChainAction};

impl<Fut: ?Sized + TryFuture> TryFutureExt for Fut {}

/// Adapters specific to [`Result`]-returning futures
pub trait TryFutureExt: TryFuture {
    /// Flattens the execution of this future when the successful result of this
    /// future is a [`Sink`].
    ///
    /// This can be useful when sink initialization is deferred, and it is
    /// convenient to work with that sink as if the sink was available at the
    /// call site.
    ///
    /// Note that this function consumes this future and returns a wrapped
    /// version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// use futures::future::{Future, TryFutureExt};
    /// use futures::sink::Sink;
    /// # use futures::channel::mpsc::{self, SendError};
    /// # type T = i32;
    /// # type E = SendError;
    ///
    /// fn make_sink_async() -> impl Future<Output = Result<
    ///     impl Sink<T, Error = E>,
    ///     E,
    /// >> { // ... }
    /// # let (tx, _rx) = mpsc::unbounded::<i32>();
    /// # futures::future::ready(Ok(tx))
    /// # }
    /// fn take_sink(sink: impl Sink<T, Error = E>) { /* ... */ }
    ///
    /// let fut = make_sink_async();
    /// take_sink(fut.flatten_sink())
    /// ```
    #[cfg(feature = "sink")]
    fn flatten_sink<Item>(self) -> FlattenSink<Self, Self::Ok>
    where
        Self::Ok: Sink<Item, Error = Self::Error>,
        Self: Sized,
    {
        FlattenSink::new(self)
    }

    /// Maps this future's success value to a different value.
    ///
    /// This method can be used to change the [`Ok`](TryFuture::Ok) type of the
    /// future into a different type. It is similar to the [`Result::map`]
    /// method. You can use this method to chain along a computation once the
    /// future has been resolved.
    ///
    /// The provided closure `f` will only be called if this future is resolved
    /// to an [`Ok`]. If it resolves to an [`Err`], panics, or is dropped, then
    /// the provided closure will never be invoked.
    ///
    /// Note that this method consumes the future it is called on and returns a
    /// wrapped version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// use futures::future::TryFutureExt;
    ///
    /// # futures::executor::block_on(async {
    /// let future = async { Ok::<i32, i32>(1) };
    /// let future = future.map_ok(|x| x + 3);
    /// assert_eq!(future.await, Ok(4));
    /// # });
    /// ```
    ///
    /// Calling [`map_ok`](TryFutureExt::map_ok) on an errored future has no
    /// effect:
    ///
    /// ```
    /// use futures::future::TryFutureExt;
    ///
    /// # futures::executor::block_on(async {
    /// let future = async { Err::<i32, i32>(1) };
    /// let future = future.map_ok(|x| x + 3);
    /// assert_eq!(future.await, Err(1));
    /// # });
    /// ```
    fn map_ok<T, F>(self, f: F) -> MapOk<Self, F>
        where F: FnOnce(Self::Ok) -> T,
              Self: Sized,
    {
        MapOk::new(self, f)
    }

    /// Maps this future's error value to a different value.
    ///
    /// This method can be used to change the [`Error`](TryFuture::Error) type
    /// of the future into a different type. It is similar to the
    /// [`Result::map_err`] method. You can use this method for example to
    /// ensure that futures have the same [`Error`](TryFuture::Error) type when
    /// using [`select!`] or [`join!`].
    ///
    /// The provided closure `f` will only be called if this future is resolved
    /// to an [`Err`]. If it resolves to an [`Ok`], panics, or is dropped, then
    /// the provided closure will never be invoked.
    ///
    /// Note that this method consumes the future it is called on and returns a
    /// wrapped version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// use futures::future::TryFutureExt;
    ///
    /// # futures::executor::block_on(async {
    /// let future = async { Err::<i32, i32>(1) };
    /// let future = future.map_err(|x| x + 3);
    /// assert_eq!(future.await, Err(4));
    /// # });
    /// ```
    ///
    /// Calling [`map_err`](TryFutureExt::map_err) on a successful future has
    /// no effect:
    ///
    /// ```
    /// use futures::future::TryFutureExt;
    ///
    /// # futures::executor::block_on(async {
    /// let future = async { Ok::<i32, i32>(1) };
    /// let future = future.map_err(|x| x + 3);
    /// assert_eq!(future.await, Ok(1));
    /// # });
    /// ```
    fn map_err<E, F>(self, f: F) -> MapErr<Self, F>
        where F: FnOnce(Self::Error) -> E,
              Self: Sized,
    {
        MapErr::new(self, f)
    }

    /// Maps this future's [`Error`](TryFuture::Error) to a new error type
    /// using the [`Into`](std::convert::Into) trait.
    ///
    /// This method does for futures what the `?`-operator does for
    /// [`Result`]: It lets the compiler infer the type of the resulting
    /// error. Just as [`map_err`](TryFutureExt::map_err), this is useful for
    /// example to ensure that futures have the same [`Error`](TryFuture::Error)
    /// type when using [`select!`] or [`join!`].
    ///
    /// Note that this method consumes the future it is called on and returns a
    /// wrapped version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// use futures::future::TryFutureExt;
    ///
    /// # futures::executor::block_on(async {
    /// let future_err_u8 = async { Err::<(), u8>(1) };
    /// let future_err_i32 = future_err_u8.err_into::<i32>();
    /// # });
    /// ```
    fn err_into<E>(self) -> ErrInto<Self, E>
        where Self: Sized,
              Self::Error: Into<E>
    {
        ErrInto::new(self)
    }

    /// Executes another future after this one resolves successfully. The
    /// success value is passed to a closure to create this subsequent future.
    ///
    /// The provided closure `f` will only be called if this future is resolved
    /// to an [`Ok`]. If this future resolves to an [`Err`], panics, or is
    /// dropped, then the provided closure will never be invoked. The
    /// [`Error`](TryFuture::Error) type of this future and the future
    /// returned by `f` have to match.
    ///
    /// Note that this method consumes the future it is called on and returns a
    /// wrapped version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// use futures::future::TryFutureExt;
    ///
    /// # futures::executor::block_on(async {
    /// let future = async { Ok::<i32, i32>(1) };
    /// let future = future.and_then(|x| async move { Ok::<i32, i32>(x + 3) });
    /// assert_eq!(future.await, Ok(4));
    /// # });
    /// ```
    ///
    /// Calling [`and_then`](TryFutureExt::and_then) on an errored future has no
    /// effect:
    ///
    /// ```
    /// use futures::future::TryFutureExt;
    ///
    /// # futures::executor::block_on(async {
    /// let future = async { Err::<i32, i32>(1) };
    /// let future = future.and_then(|x| async move { Err::<i32, i32>(x + 3) });
    /// assert_eq!(future.await, Err(1));
    /// # });
    /// ```
    fn and_then<Fut, F>(self, f: F) -> AndThen<Self, Fut, F>
        where F: FnOnce(Self::Ok) -> Fut,
              Fut: TryFuture<Error = Self::Error>,
              Self: Sized,
    {
        AndThen::new(self, f)
    }

    /// Executes another future if this one resolves to an error. The
    /// error value is passed to a closure to create this subsequent future.
    ///
    /// The provided closure `f` will only be called if this future is resolved
    /// to an [`Err`]. If this future resolves to an [`Ok`], panics, or is
    /// dropped, then the provided closure will never be invoked. The
    /// [`Ok`](TryFuture::Ok) type of this future and the future returned by `f`
    /// have to match.
    ///
    /// Note that this method consumes the future it is called on and returns a
    /// wrapped version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// use futures::future::TryFutureExt;
    ///
    /// # futures::executor::block_on(async {
    /// let future = async { Err::<i32, i32>(1) };
    /// let future = future.or_else(|x| async move { Err::<i32, i32>(x + 3) });
    /// assert_eq!(future.await, Err(4));
    /// # });
    /// ```
    ///
    /// Calling [`or_else`](TryFutureExt::or_else) on a successful future has
    /// no effect:
    ///
    /// ```
    /// use futures::future::TryFutureExt;
    ///
    /// # futures::executor::block_on(async {
    /// let future = async { Ok::<i32, i32>(1) };
    /// let future = future.or_else(|x| async move { Ok::<i32, i32>(x + 3) });
    /// assert_eq!(future.await, Ok(1));
    /// # });
    /// ```
    fn or_else<Fut, F>(self, f: F) -> OrElse<Self, Fut, F>
        where F: FnOnce(Self::Error) -> Fut,
              Fut: TryFuture<Ok = Self::Ok>,
              Self: Sized,
    {
        OrElse::new(self, f)
    }

    /// Do something with the success value of a future before passing it on.
    ///
    /// When using futures, you'll often chain several of them together.  While
    /// working on such code, you might want to check out what's happening at
    /// various parts in the pipeline, without consuming the intermediate
    /// value. To do that, insert a call to `inspect_ok`.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future::TryFutureExt;
    ///
    /// let future = async { Ok::<_, ()>(1) };
    /// let new_future = future.inspect_ok(|&x| println!("about to resolve: {}", x));
    /// assert_eq!(new_future.await, Ok(1));
    /// # });
    /// ```
    fn inspect_ok<F>(self, f: F) -> InspectOk<Self, F>
        where F: FnOnce(&Self::Ok),
              Self: Sized,
    {
        InspectOk::new(self, f)
    }

    /// Do something with the error value of a future before passing it on.
    ///
    /// When using futures, you'll often chain several of them together.  While
    /// working on such code, you might want to check out what's happening at
    /// various parts in the pipeline, without consuming the intermediate
    /// value. To do that, insert a call to `inspect_err`.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future::TryFutureExt;
    ///
    /// let future = async { Err::<(), _>(1) };
    /// let new_future = future.inspect_err(|&x| println!("about to error: {}", x));
    /// assert_eq!(new_future.await, Err(1));
    /// # });
    /// ```
    fn inspect_err<F>(self, f: F) -> InspectErr<Self, F>
        where F: FnOnce(&Self::Error),
              Self: Sized,
    {
        InspectErr::new(self, f)
    }

    /// Flatten the execution of this future when the successful result of this
    /// future is a stream.
    ///
    /// This can be useful when stream initialization is deferred, and it is
    /// convenient to work with that stream as if stream was available at the
    /// call site.
    ///
    /// Note that this function consumes this future and returns a wrapped
    /// version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future::TryFutureExt;
    /// use futures::stream::{self, TryStreamExt};
    ///
    /// let stream_items = vec![17, 18, 19].into_iter().map(Ok);
    /// let future_of_a_stream = async { Ok::<_, ()>(stream::iter(stream_items)) };
    ///
    /// let stream = future_of_a_stream.try_flatten_stream();
    /// let list = stream.try_collect::<Vec<_>>().await;
    /// assert_eq!(list, Ok(vec![17, 18, 19]));
    /// # });
    /// ```
    fn try_flatten_stream(self) -> TryFlattenStream<Self>
        where Self::Ok: TryStream<Error = Self::Error>,
              Self: Sized
    {
        TryFlattenStream::new(self)
    }

    /// Unwraps this future's ouput, producing a future with this future's
    /// [`Ok`](TryFuture::Ok) type as its
    /// [`Output`](std::future::Future::Output) type.
    ///
    /// If this future is resolved successfully, the returned future will
    /// contain the original future's success value as output. Otherwise, the
    /// closure `f` is called with the error value to produce an alternate
    /// success value.
    ///
    /// This method is similar to the [`Result::unwrap_or_else`] method.
    ///
    /// # Examples
    ///
    /// ```
    /// use futures::future::TryFutureExt;
    ///
    /// # futures::executor::block_on(async {
    /// let future = async { Err::<(), &str>("Boom!") };
    /// let future = future.unwrap_or_else(|_| ());
    /// assert_eq!(future.await, ());
    /// # });
    /// ```
    fn unwrap_or_else<F>(self, f: F) -> UnwrapOrElse<Self, F>
        where Self: Sized,
              F: FnOnce(Self::Error) -> Self::Ok
    {
        UnwrapOrElse::new(self, f)
    }

    /// Wraps a [`TryFuture`] into a future compatable with libraries using
    /// futures 0.1 future definitons. Requires the `compat` feature to enable.
    #[cfg(feature = "compat")]
    fn compat(self) -> Compat<Self>
        where Self: Sized + Unpin,
    {
        Compat::new(self)
    }

    /// Wraps a [`TryFuture`] into a type that implements
    /// [`Future`](std::future::Future).
    ///
    /// [`TryFuture`]s currently do not implement the
    /// [`Future`](std::future::Future) trait due to limitations of the
    /// compiler.
    ///
    /// # Examples
    ///
    /// ```
    /// use futures::future::{Future, TryFuture, TryFutureExt};
    ///
    /// # type T = i32;
    /// # type E = ();
    /// fn make_try_future() -> impl TryFuture<Ok = T, Error = E> { // ... }
    /// # async { Ok::<i32, ()>(1) }
    /// # }
    /// fn take_future(future: impl Future<Output = Result<T, E>>) { /* ... */ }
    ///
    /// take_future(make_try_future().into_future());
    /// ```
    fn into_future(self) -> IntoFuture<Self>
        where Self: Sized,
    {
        IntoFuture::new(self)
    }

    /// A convenience method for calling [`TryFuture::try_poll`] on [`Unpin`]
    /// future types.
    fn try_poll_unpin(
        &mut self,
        cx: &mut Context<'_>,
    ) -> Poll<Result<Self::Ok, Self::Error>>
    where Self: Unpin,
    {
        Pin::new(self).try_poll(cx)
    }
}