1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
//! Streams //! //! This module contains a number of functions for working with `Stream`s, //! including the `StreamExt` trait which adds methods to `Stream` types. use core::marker::Unpin; use core::mem::PinMut; use either::Either; use futures_core::future::Future; use futures_core::stream::Stream; use futures_core::task::{self, Poll}; use futures_sink::Sink; mod iter; pub use self::iter::{iter, Iter}; mod repeat; pub use self::repeat::{repeat, Repeat}; mod chain; pub use self::chain::Chain; mod concat; pub use self::concat::Concat; mod empty; pub use self::empty::{empty, Empty}; mod filter; pub use self::filter::Filter; mod filter_map; pub use self::filter_map::FilterMap; mod flatten; pub use self::flatten::Flatten; mod fold; pub use self::fold::Fold; mod forward; pub use self::forward::Forward; mod for_each; pub use self::for_each::ForEach; mod fuse; pub use self::fuse::Fuse; mod into_future; pub use self::into_future::StreamFuture; mod inspect; pub use self::inspect::Inspect; mod map; pub use self::map::Map; mod next; pub use self::next::Next; mod once; pub use self::once::{once, Once}; mod peek; pub use self::peek::Peekable; mod poll_fn; pub use self::poll_fn::{poll_fn, PollFn}; mod select; pub use self::select::Select; mod skip; pub use self::skip::Skip; mod skip_while; pub use self::skip_while::SkipWhile; mod take; pub use self::take::Take; mod take_while; pub use self::take_while::TakeWhile; mod then; pub use self::then::Then; mod unfold; pub use self::unfold::{unfold, Unfold}; mod zip; pub use self::zip::Zip; if_std! { use std; use std::iter::Extend; mod buffer_unordered; pub use self::buffer_unordered::BufferUnordered; mod buffered; pub use self::buffered::Buffered; mod catch_unwind; pub use self::catch_unwind::CatchUnwind; mod chunks; pub use self::chunks::Chunks; mod collect; pub use self::collect::Collect; mod for_each_concurrent; pub use self::for_each_concurrent::ForEachConcurrent; mod futures_ordered; pub use self::futures_ordered::{futures_ordered, FuturesOrdered}; mod futures_unordered; pub use self::futures_unordered::{futures_unordered, FuturesUnordered}; mod split; pub use self::split::{SplitStream, SplitSink, ReuniteError}; // ToDo // mod select_all; // pub use self::select_all::{select_all, SelectAll}; } impl<T: ?Sized> StreamExt for T where T: Stream {} /// An extension trait for `Stream`s that provides a variety of convenient /// combinator functions. pub trait StreamExt: Stream { /// Creates a future that resolves to the next item in the stream. /// /// Note that because `next` doesn't take ownership over the stream, /// the [`Stream`] type must be [`Unpin`]. If you want to use `next` with a /// [`!Unpin`](Unpin) stream, you'll first have to pin the stream. This can /// be done by wrapping the stream in a [`PinBox`](std::boxed::PinBox) or /// pinning it to the stack using the `pin_mut!` macro. /// /// # Examples /// /// ``` /// #![feature(pin)] /// use futures::executor::block_on; /// use futures::stream::{self, StreamExt}; /// /// let mut stream = stream::iter(1..=3); /// /// assert_eq!(block_on(stream.next()), Some(1)); /// assert_eq!(block_on(stream.next()), Some(2)); /// assert_eq!(block_on(stream.next()), Some(3)); /// assert_eq!(block_on(stream.next()), None); /// ``` fn next(&mut self) -> Next<'_, Self> where Self: Sized + Unpin, { Next::new(self) } /// Converts this stream into a future of `(next_item, tail_of_stream)`. /// If the stream terminates, then the next item is [`None`]. /// /// The returned future can be used to compose streams and futures together /// by placing everything into the "world of futures". /// /// Note that because `into_future` moves the stream, the [`Stream`] type /// must be [`Unpin`]. If you want to use `into_future` with a /// [`!Unpin`](Unpin) stream, you'll first have to pin the stream. This can /// be done by wrapping the stream in a [`PinBox`](std::boxed::PinBox) or /// pinning it to the stack using the `pin_mut!` macro. /// /// # Examples /// /// ``` /// #![feature(pin)] /// use futures::executor::block_on; /// use futures::stream::{self, StreamExt}; /// /// let stream = stream::iter(1..=3); /// /// let (item, stream) = block_on(stream.into_future()); /// assert_eq!(Some(1), item); /// /// let (item, stream) = block_on(stream.into_future()); /// assert_eq!(Some(2), item); /// ``` fn into_future(self) -> StreamFuture<Self> where Self: Sized + Unpin, { StreamFuture::new(self) } /// Maps this stream's items to a different type, returning a new stream of /// the resulting type. /// /// The provided closure is executed over all elements of this stream as /// they are made available. It is executed inline with calls to /// [`poll_next`](Stream::poll_next). /// /// Note that this function consumes the stream passed into it and returns a /// wrapped version of it, similar to the existing `map` methods in the /// standard library. /// /// # Examples /// /// ``` /// use futures::executor::block_on; /// use futures::stream::{self, StreamExt}; /// /// let stream = stream::iter(1..=3); /// let stream = stream.map(|x| x + 3); /// /// assert_eq!(vec![4, 5, 6], block_on(stream.collect::<Vec<_>>())); /// ``` fn map<T, F>(self, f: F) -> Map<Self, F> where F: FnMut(Self::Item) -> T, Self: Sized { Map::new(self, f) } /// Filters the values produced by this stream according to the provided /// asynchronous predicate. /// /// As values of this stream are made available, the provided predicate `f` /// will be run against them. If the predicate returns a `Future` which /// resolves to `true`, then the stream will yield the value, but if the /// predicate returns a `Future` which resolves to `false`, then the value /// will be discarded and the next value will be produced. /// /// Note that this function consumes the stream passed into it and returns a /// wrapped version of it, similar to the existing `filter` methods in the /// standard library. /// /// # Examples /// /// ``` /// use futures::executor::block_on; /// use futures::future; /// use futures::stream::{self, StreamExt}; /// /// let stream = stream::iter(1..=10); /// let evens = stream.filter(|x| future::ready(x % 2 == 0)); /// /// assert_eq!(vec![2, 4, 6, 8, 10], block_on(evens.collect::<Vec<_>>())); /// ``` fn filter<Fut, F>(self, f: F) -> Filter<Self, Fut, F> where F: FnMut(&Self::Item) -> Fut, Fut: Future<Output = bool>, Self: Sized, { Filter::new(self, f) } /// Filters the values produced by this stream while simultaneously mapping /// them to a different type according to the provided asynchronous closure. /// /// As values of this stream are made available, the provided function will /// be run on them. If the future returned by the predicate `f` resolves to /// [`Some(item)`](Some) then the stream will yield the value `item`, but if /// it resolves to [`None`] then the next value will be produced. /// /// Note that this function consumes the stream passed into it and returns a /// wrapped version of it, similar to the existing `filter_map` methods in /// the standard library. /// /// # Examples /// ``` /// use futures::executor::block_on; /// use futures::future; /// use futures::stream::{self, StreamExt}; /// /// let stream = stream::iter(1..=10); /// let evens = stream.filter_map(|x| { /// let ret = if x % 2 == 0 { Some(x + 1) } else { None }; /// future::ready(ret) /// }); /// /// assert_eq!(vec![3, 5, 7, 9, 11], block_on(evens.collect::<Vec<_>>())); /// ``` fn filter_map<Fut, T, F>(self, f: F) -> FilterMap<Self, Fut, F> where F: FnMut(Self::Item) -> Fut, Fut: Future<Output = Option<T>>, Self: Sized, { FilterMap::new(self, f) } /// Computes from this stream's items new items of a different type using /// an asynchronous closure. /// /// The provided closure `f` will be called with an `Item` once a value is /// ready, it returns a future which will then be run to completion /// to produce the next value on this stream. /// /// Note that this function consumes the stream passed into it and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// use futures::executor::block_on; /// use futures::future; /// use futures::stream::{self, StreamExt}; /// /// let stream = stream::iter(1..=3); /// let stream = stream.then(|x| future::ready(x + 3)); /// /// assert_eq!(vec![4, 5, 6], block_on(stream.collect::<Vec<_>>())); /// ``` fn then<Fut, F>(self, f: F) -> Then<Self, Fut, F> where F: FnMut(Self::Item) -> Fut, Fut: Future, Self: Sized { Then::new(self, f) } /// Collect all of the values of this stream into a vector, returning a /// future representing the result of that computation. /// /// The returned future will be resolved when the stream terminates. /// /// This method is only available when the `std` feature of this /// library is activated, and it is activated by default. /// /// # Examples /// /// ``` /// use futures::channel::mpsc; /// use futures::executor::block_on; /// use futures::stream::StreamExt; /// use std::thread; /// /// let (mut tx, rx) = mpsc::unbounded(); /// /// thread::spawn(move || { /// for i in (1..=5) { /// tx.unbounded_send(i).unwrap(); /// } /// }); /// /// let output = block_on(rx.collect::<Vec<i32>>()); /// assert_eq!(output, vec![1, 2, 3, 4, 5]); /// ``` #[cfg(feature = "std")] fn collect<C: Default + Extend<Self::Item>>(self) -> Collect<Self, C> where Self: Sized { Collect::new(self) } /// Concatenate all items of a stream into a single extendable /// destination, returning a future representing the end result. /// /// This combinator will extend the first item with the contents /// of all the subsequent results of the stream. If the stream is /// empty, the default value will be returned. /// /// Works with all collections that implement the /// [`Extend`](std::iter::Extend) trait. /// /// # Examples /// /// ``` /// use futures::channel::mpsc; /// use futures::executor::block_on; /// use futures::stream::StreamExt; /// use std::thread; /// /// let (mut tx, rx) = mpsc::unbounded(); /// /// thread::spawn(move || { /// for i in (0..3).rev() { /// let n = i * 3; /// tx.unbounded_send(vec![n + 1, n + 2, n + 3]).unwrap(); /// } /// }); /// /// let result = block_on(rx.concat()); /// /// assert_eq!(result, vec![7, 8, 9, 4, 5, 6, 1, 2, 3]); /// ``` fn concat(self) -> Concat<Self> where Self: Sized, Self::Item: Extend<<<Self as Stream>::Item as IntoIterator>::Item> + IntoIterator + Default, { Concat::new(self) } /// Execute an accumulating asynchronous computation over a stream, /// collecting all the values into one final result. /// /// This combinator will accumulate all values returned by this stream /// according to the closure provided. The initial state is also provided to /// this method and then is returned again by each execution of the closure. /// Once the entire stream has been exhausted the returned future will /// resolve to this value. /// /// # Examples /// /// ``` /// use futures::executor::block_on; /// use futures::future; /// use futures::stream::{self, StreamExt}; /// /// let number_stream = stream::iter(0..6); /// let sum = number_stream.fold(0, |acc, x| future::ready(acc + x)); /// assert_eq!(block_on(sum), 15); /// ``` fn fold<T, Fut, F>(self, init: T, f: F) -> Fold<Self, Fut, T, F> where F: FnMut(T, Self::Item) -> Fut, Fut: Future<Output = T>, Self: Sized { Fold::new(self, f, init) } /// Flattens a stream of streams into just one continuous stream. /// /// # Examples /// /// ``` /// use futures::channel::mpsc; /// use futures::executor::block_on; /// use futures::stream::StreamExt; /// use std::thread; /// /// let (tx1, rx1) = mpsc::unbounded(); /// let (tx2, rx2) = mpsc::unbounded(); /// let (tx3, rx3) = mpsc::unbounded(); /// /// thread::spawn(move || { /// tx1.unbounded_send(1).unwrap(); /// tx1.unbounded_send(2).unwrap(); /// }); /// thread::spawn(move || { /// tx2.unbounded_send(3).unwrap(); /// tx2.unbounded_send(4).unwrap(); /// }); /// thread::spawn(move || { /// tx3.unbounded_send(rx1).unwrap(); /// tx3.unbounded_send(rx2).unwrap(); /// }); /// /// let output = block_on(rx3.flatten().collect::<Vec<i32>>()); /// assert_eq!(output, vec![1, 2, 3, 4]); /// ``` fn flatten(self) -> Flatten<Self> where Self::Item: Stream, Self: Sized { Flatten::new(self) } /// Skip elements on this stream while the provided asynchronous predicate /// resolves to `true`. /// /// This function, like `Iterator::skip_while`, will skip elements on the /// stream until the predicate `f` resolves to `false`. Once one element /// returns false all future elements will be returned from the underlying /// stream. /// /// # Examples /// /// ``` /// use futures::executor::block_on; /// use futures::future; /// use futures::stream::{self, StreamExt}; /// /// let stream = stream::iter(1..=10); /// /// let stream = stream.skip_while(|x| future::ready(*x <= 5)); /// /// assert_eq!(vec![6, 7, 8, 9, 10], block_on(stream.collect::<Vec<_>>())); /// ``` fn skip_while<Fut, F>(self, f: F) -> SkipWhile<Self, Fut, F> where F: FnMut(&Self::Item) -> Fut, Fut: Future<Output = bool>, Self: Sized { SkipWhile::new(self, f) } /// Take elements from this stream while the provided asynchronous predicate /// resolves to `true`. /// /// This function, like `Iterator::take_while`, will take elements from the /// stream until the predicate `f` resolves to `false`. Once one element /// returns false it will always return that the stream is done. /// /// # Examples /// /// ``` /// use futures::executor::block_on; /// use futures::future; /// use futures::stream::{self, StreamExt}; /// /// let stream = stream::iter(1..=10); /// /// let stream = stream.take_while(|x| future::ready(*x <= 5)); /// /// assert_eq!(vec![1, 2, 3, 4, 5], block_on(stream.collect::<Vec<_>>())); /// ``` fn take_while<Fut, F>(self, f: F) -> TakeWhile<Self, Fut, F> where F: FnMut(&Self::Item) -> Fut, Fut: Future<Output = bool>, Self: Sized { TakeWhile::new(self, f) } /// Runs this stream to completion, executing the provided asynchronous /// closure for each element on the stream. /// /// The closure provided will be called for each item this stream produces, /// yielding a future. That future will then be executed to completion /// before moving on to the next item. /// /// The returned value is a `Future` where the `Output` type is `()`; it is /// executed entirely for its side effects. /// /// To process each item in the stream and produce another stream instead /// of a single future, use `then` instead. /// /// # Examples /// /// ``` /// use futures::executor::block_on; /// use futures::future; /// use futures::stream::{self, StreamExt}; /// /// let mut x = 0; /// /// { /// let fut = stream::repeat(1).take(3).for_each(|item| { /// x += item; /// future::ready(()) /// }); /// block_on(fut); /// } /// /// assert_eq!(x, 3); /// ``` fn for_each<Fut, F>(self, f: F) -> ForEach<Self, Fut, F> where F: FnMut(Self::Item) -> Fut, Fut: Future<Output = ()>, Self: Sized { ForEach::new(self, f) } /// Runs this stream to completion, executing the provided asynchronous /// closure for each element on the stream concurrently as elements become /// available. /// /// This is similar to [`StreamExt::for_each`], but the futures /// produced by the closure are run concurrently (but not in parallel-- /// this combinator does not introduce any threads). /// /// The closure provided will be called for each item this stream produces, /// yielding a future. That future will then be executed to completion /// concurrently with the other futures produced by the closure. /// /// The first argument is an optional limit on the number of concurrent /// futures. If this limit is not `None`, no more than `limit` futures /// will be run concurrently. The `limit` argument is of type /// `Into<Option<usize>>`, and so can be provided as either `None`, /// `Some(10)`, or just `10`. Note: a limit of zero is interpreted as /// no limit at all, and will have the same result as passing in `None`. /// /// This method is only available when the `std` feature of this /// library is activated, and it is activated by default. /// /// # Examples /// /// ``` /// #![feature(async_await, await_macro)] /// # futures::executor::block_on(async { /// use futures::channel::oneshot; /// use futures::stream::{self, StreamExt}; /// /// let (tx1, rx1) = oneshot::channel(); /// let (tx2, rx2) = oneshot::channel(); /// let (tx3, rx3) = oneshot::channel(); /// /// let fut = stream::iter(vec![rx1, rx2, rx3]).for_each_concurrent( /// /* limit */ 2, /// async move |rx| { /// await!(rx).unwrap(); /// } /// ); /// tx1.send(()).unwrap(); /// tx2.send(()).unwrap(); /// tx3.send(()).unwrap(); /// await!(fut); /// # }) /// ``` #[cfg(feature = "std")] fn for_each_concurrent<Fut, F>( self, limit: impl Into<Option<usize>>, f: F, ) -> ForEachConcurrent<Self, Fut, F> where F: FnMut(Self::Item) -> Fut, Fut: Future<Output = ()>, Self: Sized, { ForEachConcurrent::new(self, limit.into(), f) } /// Creates a new stream of at most `n` items of the underlying stream. /// /// Once `n` items have been yielded from this stream then it will always /// return that the stream is done. /// /// # Examples /// /// ``` /// use futures::executor::block_on; /// use futures::stream::{self, StreamExt}; /// /// let stream = stream::iter(1..=10).take(3); /// /// assert_eq!(vec![1, 2, 3], block_on(stream.collect::<Vec<_>>())); /// ``` fn take(self, n: u64) -> Take<Self> where Self: Sized { Take::new(self, n) } /// Creates a new stream which skips `n` items of the underlying stream. /// /// Once `n` items have been skipped from this stream then it will always /// return the remaining items on this stream. /// /// # Examples /// /// ``` /// use futures::executor::block_on; /// use futures::stream::{self, StreamExt}; /// /// let stream = stream::iter(1..=10).skip(5); /// /// assert_eq!(vec![6, 7, 8, 9, 10], block_on(stream.collect::<Vec<_>>())); /// ``` fn skip(self, n: u64) -> Skip<Self> where Self: Sized { Skip::new(self, n) } /// Fuse a stream such that [`poll_next`](Stream::poll_next) will never /// again be called once it has finished. /// /// Normally, once a stream has returned [`None`] from /// [`poll_next`](Stream::poll_next) any further calls could exhibit bad /// behavior such as block forever, panic, never return, etc. If it is known /// that [`poll_next`](Stream::poll_next) may be called after stream /// has already finished, then this method can be used to ensure that it has /// defined semantics. /// /// The [`poll_next`](Stream::poll_next) method of a `fuse`d stream /// is guaranteed to return [`None`] after the underlying stream has /// finished. /// /// # Examples /// /// ``` /// #![feature(futures_api)] /// use futures::executor::block_on_stream; /// use futures::stream::{self, StreamExt}; /// use futures::task::Poll; /// /// let mut x = 0; /// let stream = stream::poll_fn(|_| { /// x += 1; /// match x { /// 0..=2 => Poll::Ready(Some(x)), /// 3 => Poll::Ready(None), /// _ => panic!("should not happen") /// } /// }).fuse(); /// /// let mut iter = block_on_stream(stream); /// assert_eq!(Some(1), iter.next()); /// assert_eq!(Some(2), iter.next()); /// assert_eq!(None, iter.next()); /// assert_eq!(None, iter.next()); /// // ... /// ``` fn fuse(self) -> Fuse<Self> where Self: Sized { Fuse::new(self) } /// Borrows a stream, rather than consuming it. /// /// This is useful to allow applying stream adaptors while still retaining /// ownership of the original stream. /// /// # Examples /// /// ``` /// use futures::executor::block_on; /// use futures::future; /// use futures::stream::{self, StreamExt}; /// /// let mut stream = stream::iter(1..5); /// /// let sum = block_on(stream.by_ref() /// .take(2) /// .fold(0, |a, b| future::ready(a + b))); /// assert_eq!(sum, 3); /// /// // You can use the stream again /// let sum = block_on(stream.take(2).fold(0, |a, b| future::ready(a + b))); /// assert_eq!(sum, 7); /// ``` fn by_ref(&mut self) -> &mut Self where Self: Sized { self } /// Catches unwinding panics while polling the stream. /// /// Caught panic (if any) will be the last element of the resulting stream. /// /// In general, panics within a stream can propagate all the way out to the /// task level. This combinator makes it possible to halt unwinding within /// the stream itself. It's most commonly used within task executors. This /// method should not be used for error handling. /// /// Note that this method requires the `UnwindSafe` bound from the standard /// library. This isn't always applied automatically, and the standard /// library provides an `AssertUnwindSafe` wrapper type to apply it /// after-the fact. To assist using this method, the [`Stream`] trait is /// also implemented for `AssertUnwindSafe<St>` where `St` implements /// [`Stream`]. /// /// This method is only available when the `std` feature of this /// library is activated, and it is activated by default. /// /// # Examples /// /// ``` /// use futures::executor::block_on; /// use futures::stream::{self, StreamExt}; /// /// let stream = stream::iter(vec![Some(10), None, Some(11)]); /// // Panic on second element /// let stream_panicking = stream.map(|o| o.unwrap()); /// // Collect all the results /// let stream = stream_panicking.catch_unwind(); /// /// let results: Vec<Result<i32, _>> = block_on(stream.collect()); /// match results[0] { /// Ok(10) => {} /// _ => panic!("unexpected result!"), /// } /// assert!(results[1].is_err()); /// assert_eq!(results.len(), 2); /// ``` #[cfg(feature = "std")] fn catch_unwind(self) -> CatchUnwind<Self> where Self: Sized + std::panic::UnwindSafe { CatchUnwind::new(self) } /// An adaptor for creating a buffered list of pending futures. /// /// If this stream's item can be converted into a future, then this adaptor /// will buffer up to at most `n` futures and then return the outputs in the /// same order as the underlying stream. No more than `n` futures will be /// buffered at any point in time, and less than `n` may also be buffered /// depending on the state of each future. /// /// The returned stream will be a stream of each future's output. /// /// This method is only available when the `std` feature of this /// library is activated, and it is activated by default. #[cfg(feature = "std")] fn buffered(self, n: usize) -> Buffered<Self> where Self::Item: Future, Self: Sized { Buffered::new(self, n) } /// An adaptor for creating a buffered list of pending futures (unordered). /// /// If this stream's item can be converted into a future, then this adaptor /// will buffer up to `n` futures and then return the outputs in the order /// in which they complete. No more than `n` futures will be buffered at /// any point in time, and less than `n` may also be buffered depending on /// the state of each future. /// /// The returned stream will be a stream of each future's output. /// /// This method is only available when the `std` feature of this /// library is activated, and it is activated by default. /// /// # Examples /// /// ``` /// #![feature(async_await, await_macro)] /// # futures::executor::block_on(async { /// use futures::channel::oneshot; /// use futures::stream::{self, StreamExt}; /// /// let (send_one, recv_one) = oneshot::channel(); /// let (send_two, recv_two) = oneshot::channel(); /// /// let stream_of_futures = stream::iter(vec![recv_one, recv_two]); /// let mut buffered = stream_of_futures.buffer_unordered(10); /// /// send_two.send(2i32); /// assert_eq!(await!(buffered.next()), Some(Ok(2i32))); /// /// send_one.send(1i32); /// assert_eq!(await!(buffered.next()), Some(Ok(1i32))); /// /// assert_eq!(await!(buffered.next()), None); /// # }) /// ``` #[cfg(feature = "std")] fn buffer_unordered(self, n: usize) -> BufferUnordered<Self> where Self::Item: Future, Self: Sized { BufferUnordered::new(self, n) } /// An adapter for zipping two streams together. /// /// The zipped stream waits for both streams to produce an item, and then /// returns that pair. If either stream ends then the zipped stream will /// also end. /// /// # Examples /// /// ``` /// use futures::executor::block_on; /// use futures::stream::{self, StreamExt}; /// /// let mut stream1 = stream::iter(1..=3); /// let mut stream2 = stream::iter(5..=10); /// /// let vec = block_on(stream1.zip(stream2) /// .collect::<Vec<_>>()); /// assert_eq!(vec![(1, 5), (2, 6), (3, 7)], vec); /// ``` /// fn zip<St>(self, other: St) -> Zip<Self, St> where St: Stream, Self: Sized, { Zip::new(self, other) } /// Adapter for chaining two stream. /// /// The resulting stream emits elements from the first stream, and when /// first stream reaches the end, emits the elements from the second stream. /// /// ``` /// use futures::executor::block_on; /// use futures::stream::{self, StreamExt}; /// /// let stream1 = stream::iter(vec![Ok(10), Err(false)]); /// let stream2 = stream::iter(vec![Err(true), Ok(20)]); /// /// let stream = stream1.chain(stream2); /// /// let result: Vec<_> = block_on(stream.collect()); /// assert_eq!(result, vec![ /// Ok(10), /// Err(false), /// Err(true), /// Ok(20), /// ]); /// ``` fn chain<St>(self, other: St) -> Chain<Self, St> where St: Stream<Item = Self::Item>, Self: Sized { Chain::new(self, other) } /// Creates a new stream which exposes a `peek` method. /// /// Calling `peek` returns a reference to the next item in the stream. fn peekable(self) -> Peekable<Self> where Self: Sized { Peekable::new(self) } /// An adaptor for chunking up items of the stream inside a vector. /// /// This combinator will attempt to pull items from this stream and buffer /// them into a local vector. At most `capacity` items will get buffered /// before they're yielded from the returned stream. /// /// Note that the vectors returned from this iterator may not always have /// `capacity` elements. If the underlying stream ended and only a partial /// vector was created, it'll be returned. Additionally if an error happens /// from the underlying stream then the currently buffered items will be /// yielded. /// /// This method is only available when the `std` feature of this /// library is activated, and it is activated by default. /// /// # Panics /// /// This method will panic of `capacity` is zero. #[cfg(feature = "std")] fn chunks(self, capacity: usize) -> Chunks<Self> where Self: Sized { Chunks::new(self, capacity) } /// This combinator will attempt to pull items from both streams. Each /// stream will be polled in a round-robin fashion, and whenever a stream is /// ready to yield an item that item is yielded. /// /// After one of the two input stream completes, the remaining one will be /// polled exclusively. The returned stream completes when both input /// streams have completed. /// /// Note that this method consumes both streams and returns a wrapped /// version of them. fn select<St>(self, other: St) -> Select<Self, St> where St: Stream<Item = Self::Item>, Self: Sized, { Select::new(self, other) } /// A future that completes after the given stream has been fully processed /// into the sink, including flushing. /// /// This future will drive the stream to keep producing items until it is /// exhausted, sending each item to the sink. It will complete once both the /// stream is exhausted and the sink has received and flushed all items. /// Note that the sink is **not** closed. /// /// On completion, the sink is returned. /// /// Note that this combinator is only usable with `Unpin` sinks. /// Sinks that are not `Unpin` will need to be pinned in order to be used /// with `forward`. fn forward<S>(self, sink: S) -> Forward<Self, S> where S: Sink + Unpin, Self: Stream<Item = Result<S::SinkItem, S::SinkError>> + Sized, { Forward::new(self, sink) } /// Splits this `Stream + Sink` object into separate `Stream` and `Sink` /// objects. /// /// This can be useful when you want to split ownership between tasks, or /// allow direct interaction between the two objects (e.g. via /// `Sink::send_all`). /// /// This method is only available when the `std` feature of this /// library is activated, and it is activated by default. #[cfg(feature = "std")] fn split(self) -> (SplitSink<Self>, SplitStream<Self>) where Self: Sink + Sized { split::split(self) } /// Do something with each item of this stream, afterwards passing it on. /// /// This is similar to the `Iterator::inspect` method in the standard /// library where it allows easily inspecting each value as it passes /// through the stream, for example to debug what's going on. fn inspect<F>(self, f: F) -> Inspect<Self, F> where F: FnMut(&Self::Item), Self: Sized, { Inspect::new(self, f) } /// Wrap this stream in an `Either` stream, making it the left-hand variant /// of that `Either`. /// /// This can be used in combination with the `right_stream` method to write `if` /// statements that evaluate to different streams in different branches. fn left_stream<B>(self) -> Either<Self, B> where B: Stream<Item = Self::Item>, Self: Sized { Either::Left(self) } /// Wrap this stream in an `Either` stream, making it the right-hand variant /// of that `Either`. /// /// This can be used in combination with the `left_stream` method to write `if` /// statements that evaluate to different streams in different branches. fn right_stream<B>(self) -> Either<B, Self> where B: Stream<Item = Self::Item>, Self: Sized { Either::Right(self) } /// A convenience method for calling [`Stream::poll_next`] on [`Unpin`] /// stream types. fn poll_next_unpin( &mut self, cx: &mut task::Context ) -> Poll<Option<Self::Item>> where Self: Unpin + Sized { PinMut::new(self).poll_next(cx) } }