1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
//! Streams //! //! This module contains a number of functions for working with `Streams`s //! that return `Result`s, allowing for short-circuiting computations. use core::marker::Unpin; use futures_core::future::TryFuture; use futures_core::stream::TryStream; #[cfg(feature = "compat")] use crate::compat::Compat; #[cfg(feature = "compat")] use futures_core::task::Spawn; mod err_into; pub use self::err_into::ErrInto; mod into_stream; pub use self::into_stream::IntoStream; mod map_ok; pub use self::map_ok::MapOk; mod map_err; pub use self::map_err::MapErr; mod try_next; pub use self::try_next::TryNext; mod try_for_each; pub use self::try_for_each::TryForEach; mod try_filter_map; pub use self::try_filter_map::TryFilterMap; mod try_fold; pub use self::try_fold::TryFold; mod try_skip_while; pub use self::try_skip_while::TrySkipWhile; if_std! { mod try_buffer_unordered; pub use self::try_buffer_unordered::TryBufferUnordered; mod try_collect; pub use self::try_collect::TryCollect; mod try_for_each_concurrent; pub use self::try_for_each_concurrent::TryForEachConcurrent; use futures_core::future::Future; } impl<S: TryStream> TryStreamExt for S {} /// Adapters specific to `Result`-returning streams pub trait TryStreamExt: TryStream { /// Wraps the current stream in a new stream which converts the error type /// into the one provided. /// /// # Examples /// /// ``` /// #![feature(async_await, await_macro)] /// # futures::executor::block_on(async { /// use futures::stream::{self, TryStreamExt}; /// /// let mut stream = /// stream::iter(vec![Ok(()), Err(5i32)]) /// .err_into::<i64>(); /// /// assert_eq!(await!(stream.try_next()), Ok(Some(()))); /// assert_eq!(await!(stream.try_next()), Err(5i64)); /// # }) /// ``` fn err_into<E>(self) -> ErrInto<Self, E> where Self: Sized, Self::Error: Into<E> { ErrInto::new(self) } /// Wraps the current stream in a new stream which maps the success value /// using the provided closure. /// /// # Examples /// /// ``` /// #![feature(async_await, await_macro)] /// # futures::executor::block_on(async { /// use futures::stream::{self, TryStreamExt}; /// /// let mut stream = /// stream::iter(vec![Ok(5), Err(0)]) /// .map_ok(|x| x + 2); /// /// assert_eq!(await!(stream.try_next()), Ok(Some(7))); /// assert_eq!(await!(stream.try_next()), Err(0)); /// # }) /// ``` fn map_ok<T, F>(self, f: F) -> MapOk<Self, F> where Self: Sized, F: FnMut(Self::Ok) -> T, { MapOk::new(self, f) } /// Wraps the current stream in a new stream which maps the error value /// using the provided closure. /// /// # Examples /// /// ``` /// #![feature(async_await, await_macro)] /// # futures::executor::block_on(async { /// use futures::stream::{self, TryStreamExt}; /// /// let mut stream = /// stream::iter(vec![Ok(5), Err(0)]) /// .map_err(|x| x + 2); /// /// assert_eq!(await!(stream.try_next()), Ok(Some(5))); /// assert_eq!(await!(stream.try_next()), Err(2)); /// # }) /// ``` fn map_err<E, F>(self, f: F) -> MapErr<Self, F> where Self: Sized, F: FnMut(Self::Error) -> E, { MapErr::new(self, f) } /// Wraps a [`TryStream`] into a type that implements /// [`Stream`](futures_core::Stream) /// /// [`TryStream`]s currently do not implement the /// [`Stream`](futures_core::Stream) trait because of limitations /// of the compiler. /// /// # Examples /// /// ``` /// use futures::stream::{Stream, TryStream, TryStreamExt}; /// /// # type T = i32; /// # type E = (); /// fn make_try_stream() -> impl TryStream<Ok = T, Error = E> { // ... } /// # futures::stream::empty() /// # } /// fn take_stream(stream: impl Stream<Item = Result<T, E>>) { /* ... */ } /// /// take_stream(make_try_stream().into_stream()); /// ``` fn into_stream(self) -> IntoStream<Self> where Self: Sized, { IntoStream::new(self) } /// Creates a future that attempts to resolve the next item in the stream. /// If an error is encountered before the next item, the error is returned /// instead. /// /// This is similar to the `Stream::next` combinator, but returns a /// `Result<Option<T>, E>` rather than an `Option<Result<T, E>>`, making /// for easy use with the `?` operator. /// /// # Examples /// /// ``` /// #![feature(async_await, await_macro)] /// # futures::executor::block_on(async { /// use futures::stream::{self, TryStreamExt}; /// /// let mut stream = stream::iter(vec![Ok(()), Err(())]); /// /// assert_eq!(await!(stream.try_next()), Ok(Some(()))); /// assert_eq!(await!(stream.try_next()), Err(())); /// # }) /// ``` fn try_next(&mut self) -> TryNext<'_, Self> where Self: Sized + Unpin, { TryNext::new(self) } /// Attempts to run this stream to completion, executing the provided /// asynchronous closure for each element on the stream. /// /// The provided closure will be called for each item this stream produces, /// yielding a future. That future will then be executed to completion /// before moving on to the next item. /// /// The returned value is a [`Future`](futures_core::Future) where the /// [`Output`](futures_core::Future::Output) type is /// `Result<(), Self::Error>`. If any of the intermediate /// futures or the stream returns an error, this future will return /// immediately with an error. /// /// # Examples /// /// ``` /// #![feature(async_await, await_macro)] /// # futures::executor::block_on(async { /// use futures::future; /// use futures::stream::{self, TryStreamExt}; /// /// let mut x = 0i32; /// /// { /// let fut = stream::repeat(Ok(1)).try_for_each(|item| { /// x += item; /// future::ready(if x == 3 { Err(()) } else { Ok(()) }) /// }); /// assert_eq!(await!(fut), Err(())); /// } /// /// assert_eq!(x, 3); /// # }) /// ``` fn try_for_each<Fut, F>(self, f: F) -> TryForEach<Self, Fut, F> where F: FnMut(Self::Ok) -> Fut, Fut: TryFuture<Ok = (), Error=Self::Error>, Self: Sized { TryForEach::new(self, f) } /// Skip elements on this stream while the provided asynchronous predicate /// resolves to `true`. /// /// This function is similar to [`StreamExt::skip_while`](crate::stream::StreamExt::skip_while) /// but exits early if an error occurs. /// /// # Examples /// /// ``` /// #![feature(async_await, await_macro)] /// # futures::executor::block_on(async { /// use futures::future; /// use futures::stream::{self, TryStreamExt}; /// /// let stream = stream::iter(vec![Ok::<i32, i32>(1), Ok(3), Ok(2)]); /// let mut stream = stream.try_skip_while(|x| future::ready(Ok(*x < 3))); /// /// let output: Result<Vec<i32>, i32> = await!(stream.try_collect()); /// assert_eq!(output, Ok(vec![3, 2])); /// # }) /// ``` fn try_skip_while<Fut, F>(self, f: F) -> TrySkipWhile<Self, Fut, F> where F: FnMut(&Self::Ok) -> Fut, Fut: TryFuture<Ok = bool, Error = Self::Error>, Self: Sized { TrySkipWhile::new(self, f) } /// Attempts to run this stream to completion, executing the provided asynchronous /// closure for each element on the stream concurrently as elements become /// available, exiting as soon as an error occurs. /// /// This is similar to /// [`StreamExt::for_each_concurrent`](super::StreamExt::for_each_concurrent), /// but will resolve to an error immediately if the underlying stream or the provided /// closure return an error. /// /// This method is only available when the `std` feature of this /// library is activated, and it is activated by default. /// /// # Examples /// /// ``` /// #![feature(async_await, await_macro)] /// # futures::executor::block_on(async { /// use futures::channel::oneshot; /// use futures::stream::{self, StreamExt, TryStreamExt}; /// /// let (tx1, rx1) = oneshot::channel(); /// let (tx2, rx2) = oneshot::channel(); /// let (_tx3, rx3) = oneshot::channel(); /// /// let stream = stream::iter(vec![rx1, rx2, rx3]); /// let fut = stream.map(Ok).try_for_each_concurrent( /// /* limit */ 2, /// async move |rx| { /// let res: Result<(), oneshot::Canceled> = await!(rx); /// res /// } /// ); /// /// tx1.send(()).unwrap(); /// // Drop the second sender so that `rx2` resolves to `Canceled`. /// drop(tx2); /// /// // The final result is an error because the second future /// // resulted in an error. /// assert_eq!(Err(oneshot::Canceled), await!(fut)); /// # }) /// ``` #[cfg(feature = "std")] fn try_for_each_concurrent<Fut, F>( self, limit: impl Into<Option<usize>>, f: F, ) -> TryForEachConcurrent<Self, Fut, F> where F: FnMut(Self::Ok) -> Fut, Fut: Future<Output = Result<(), Self::Error>>, Self: Sized, { TryForEachConcurrent::new(self, limit.into(), f) } /// Attempt to Collect all of the values of this stream into a vector, /// returning a future representing the result of that computation. /// /// This combinator will collect all successful results of this stream and /// collect them into a `Vec<Self::Item>`. If an error happens then all /// collected elements will be dropped and the error will be returned. /// /// The returned future will be resolved when the stream terminates. /// /// This method is only available when the `std` feature of this /// library is activated, and it is activated by default. /// /// # Examples /// /// ``` /// #![feature(async_await, await_macro)] /// # futures::executor::block_on(async { /// use futures::channel::mpsc; /// use futures::executor::block_on; /// use futures::stream::TryStreamExt; /// use std::thread; /// /// let (mut tx, rx) = mpsc::unbounded(); /// /// thread::spawn(move || { /// for i in (1..=5) { /// tx.unbounded_send(Ok(i)).unwrap(); /// } /// tx.unbounded_send(Err(6)).unwrap(); /// }); /// /// let output: Result<Vec<i32>, i32> = await!(rx.try_collect()); /// assert_eq!(output, Err(6)); /// # }) /// ``` #[cfg(feature = "std")] fn try_collect<C: Default + Extend<Self::Ok>>(self) -> TryCollect<Self, C> where Self: Sized { TryCollect::new(self) } /// Attempt to filter the values produced by this stream while /// simultaneously mapping them to a different type according to the /// provided asynchronous closure. /// /// As values of this stream are made available, the provided function will /// be run on them. If the future returned by the predicate `f` resolves to /// [`Some(item)`](Some) then the stream will yield the value `item`, but if /// it resolves to [`None`] then the next value will be produced. /// /// All errors are passed through without filtering in this combinator. /// /// Note that this function consumes the stream passed into it and returns a /// wrapped version of it, similar to the existing `filter_map` methods in /// the standard library. /// /// # Examples /// ``` /// #![feature(async_await, await_macro)] /// # futures::executor::block_on(async { /// use futures::executor::block_on; /// use futures::future; /// use futures::stream::{self, StreamExt, TryStreamExt}; /// /// let stream = stream::iter(vec![Ok(1i32), Ok(6i32), Err("error")]); /// let mut halves = stream.try_filter_map(|x| { /// let ret = if x % 2 == 0 { Some(x / 2) } else { None }; /// future::ready(Ok(ret)) /// }); /// /// assert_eq!(await!(halves.next()), Some(Ok(3))); /// assert_eq!(await!(halves.next()), Some(Err("error"))); /// # }) /// ``` fn try_filter_map<Fut, F, T>(self, f: F) -> TryFilterMap<Self, Fut, F> where Fut: TryFuture<Ok = Option<T>, Error = Self::Error>, F: FnMut(Self::Ok) -> Fut, Self: Sized { TryFilterMap::new(self, f) } /// Attempt to execute an accumulating asynchronous computation over a /// stream, collecting all the values into one final result. /// /// This combinator will accumulate all values returned by this stream /// according to the closure provided. The initial state is also provided to /// this method and then is returned again by each execution of the closure. /// Once the entire stream has been exhausted the returned future will /// resolve to this value. /// /// This method is similar to [`fold`](super::StreamExt::fold), but will /// exit early if an error is encountered in either the stream or the /// provided closure. /// /// # Examples /// /// ``` /// #![feature(async_await, await_macro)] /// # futures::executor::block_on(async { /// use futures::future; /// use futures::stream::{self, TryStreamExt}; /// /// let number_stream = stream::iter(vec![Ok::<i32, i32>(1), Ok(2)]); /// let sum = number_stream.try_fold(0, |acc, x| future::ready(Ok(acc + x))); /// assert_eq!(await!(sum), Ok(3)); /// /// let number_stream_with_err = stream::iter(vec![Ok::<i32, i32>(1), Err(2), Ok(1)]); /// let sum = number_stream_with_err.try_fold(0, |acc, x| future::ready(Ok(acc + x))); /// assert_eq!(await!(sum), Err(2)); /// # }) /// ``` fn try_fold<T, Fut, F>(self, init: T, f: F) -> TryFold<Self, Fut, T, F> where F: FnMut(T, Self::Ok) -> Fut, Fut: TryFuture<Ok = T, Error = Self::Error>, Self: Sized, { TryFold::new(self, f, init) } /// Attempt to execute several futures from a stream concurrently. /// /// This stream's `Ok` type must be a [`TryFuture`] with an `Error` type /// that matches the stream's `Error` type. /// /// This adaptor will buffer up to `n` futures and then return their /// outputs in the order in which they complete. If the underlying stream /// returns an error, it will be immediately propagated. /// /// The returned stream will be a stream of results, each containing either /// an error or a future's output. An error can be produced either by the /// underlying stream itself or by one of the futures it yielded. /// /// This method is only available when the `std` feature of this /// library is activated, and it is activated by default. /// /// # Examples /// /// Results are returned in the order of completion: /// ``` /// #![feature(async_await, await_macro)] /// # futures::executor::block_on(async { /// use futures::channel::oneshot; /// use futures::stream::{self, StreamExt, TryStreamExt}; /// /// let (send_one, recv_one) = oneshot::channel(); /// let (send_two, recv_two) = oneshot::channel(); /// /// let stream_of_futures = stream::iter(vec![Ok(recv_one), Ok(recv_two)]); /// /// let mut buffered = stream_of_futures.try_buffer_unordered(10); /// /// send_two.send(2i32); /// assert_eq!(await!(buffered.next()), Some(Ok(2i32))); /// /// send_one.send(1i32); /// assert_eq!(await!(buffered.next()), Some(Ok(1i32))); /// /// assert_eq!(await!(buffered.next()), None); /// # }) /// ``` /// /// Errors from the underlying stream itself are propagated: /// ``` /// #![feature(async_await, await_macro)] /// # futures::executor::block_on(async { /// use futures::channel::mpsc; /// use futures::future; /// use futures::stream::{StreamExt, TryStreamExt}; /// /// let (sink, stream_of_futures) = mpsc::unbounded(); /// let mut buffered = stream_of_futures.try_buffer_unordered(10); /// /// sink.unbounded_send(Ok(future::ready(Ok(7i32)))); /// assert_eq!(await!(buffered.next()), Some(Ok(7i32))); /// /// sink.unbounded_send(Err("error in the stream")); /// assert_eq!(await!(buffered.next()), Some(Err("error in the stream"))); /// # }) /// ``` #[cfg(feature = "std")] fn try_buffer_unordered(self, n: usize) -> TryBufferUnordered<Self> where Self::Ok: TryFuture<Error = Self::Error>, Self: Sized { TryBufferUnordered::new(self, n) } /// Wraps a [`TryStream`] into a stream compatible with libraries using /// futures 0.1 `Stream`. Requires the `compat` feature to be enabled. #[cfg(feature = "compat")] fn compat<Sp>(self, spawn: Sp) -> Compat<Self, Sp> where Self: Sized + Unpin, Sp: Spawn, { Compat::new(self, Some(spawn)) } }