1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
//! Abstractions for asynchronous programming.
//!
//! This crate provides a number of core abstractions for writing asynchronous
//! code:
//!
//! - [Futures](crate::future::Future) are single eventual values produced by
//!   asychronous computations. Some programming languages (e.g. JavaScript)
//!   call this concept "promise".
//! - [Streams](crate::stream::Stream) represent a series of values
//!   produced asynchronously.
//! - [Sinks](crate::sink::Sink) provide support for asynchronous writing of
//!   data.
//! - [Executors](crate::executor) are responsible for running asynchronous
//!   tasks.
//!
//! The crate also contains abstractions for [asynchronous I/O](crate::io) and
//! [cross-task communication](crate::channel).
//!
//! Underlying all of this is the *task system*, which is a form of lightweight
//! threading. Large asynchronous computations are built up using futures,
//! streams and sinks, and then spawned as independent tasks that are run to
//! completion, but *do not block* the thread running them.

#![feature(pin, arbitrary_self_types, futures_api)]

#![no_std]

#![warn(missing_docs, missing_debug_implementations)]
#![deny(bare_trait_objects)]

#![doc(html_root_url = "https://rust-lang-nursery.github.io/futures-api-docs/0.3.0-alpha.5/futures")]

#![cfg_attr(feature = "nightly", feature(cfg_target_has_atomic))]

#[doc(hidden)] pub use futures_util::core_reexport;

#[doc(hidden)] pub use futures_core::future::Future;
#[doc(hidden)] pub use futures_core::future::TryFuture;
#[doc(hidden)] pub use futures_util::future::FutureExt;
#[doc(hidden)] pub use futures_util::try_future::TryFutureExt;

#[doc(hidden)] pub use futures_core::stream::Stream;
#[doc(hidden)] pub use futures_core::stream::TryStream;
#[doc(hidden)] pub use futures_util::stream::StreamExt;
#[doc(hidden)] pub use futures_util::try_stream::TryStreamExt;

#[doc(hidden)] pub use futures_sink::Sink;
#[doc(hidden)] pub use futures_util::sink::SinkExt;

#[doc(hidden)] pub use futures_core::task::Poll;

// Macro reexports
pub use futures_util::{
    // Error/readiness propagation
    try_ready, try_poll, ready,
};
#[cfg(feature = "std")]
pub use futures_util::{
    // Async-await
    join, try_join, select, pending, poll, spawn, spawn_with_handle,
};

#[cfg(feature = "std")]
pub mod channel {
    //! Cross-task communication.
    //!
    //! Like threads, concurrent tasks sometimes need to communicate with each
    //! other. This module contains two basic abstractions for doing so:
    //!
    //! - [oneshot](crate::channel::oneshot), a way of sending a single value
    //!   from one task to another.
    //! - [mpsc](crate::channel::mpsc), a multi-producer, single-consumer
    //!   channel for sending values between tasks, analogous to the
    //!   similarly-named structure in the standard library.

    pub use futures_channel::{oneshot, mpsc};
}

#[cfg(feature = "compat")]
pub mod compat {
    //! Interop between `futures` 0.1 and 0.3.

    pub use futures_util::compat::{
        Compat,
        Executor01Future,
        Executor01As03,
        Executor01CompatExt,
        Future01CompatExt,
        Stream01CompatExt,
    };

    #[cfg(feature = "tokio-compat")]
    pub use futures_util::compat::TokioDefaultSpawner;
}

#[cfg(feature = "std")]
pub mod executor {
    //! Task execution.
    //!
    //! All asynchronous computation occurs within an executor, which is
    //! capable of spawning futures as tasks. This module provides several
    //! built-in executors, as well as tools for building your own.
    //!
    //! # Using a thread pool (M:N task scheduling)
    //!
    //! Most of the time tasks should be executed on a [thread
    //! pool](crate::executor::ThreadPool). A small set of worker threads can
    //! handle a very large set of spawned tasks (which are much lighter weight
    //! than threads).
    //!
    //! The simplest way to use a thread pool is to
    //! [`run`](crate::executor::ThreadPool::run) an initial task on it, which
    //! can then spawn further tasks back onto the pool to complete its work:
    //!
    //! ```
    //! #![feature(pin, arbitrary_self_types, futures_api)]
    //! use futures::executor::ThreadPool;
    //! # use futures::future::{Future, lazy};
    //! # let my_app = lazy(|_| 42);
    //!
    //! // assumping `my_app: Future`
    //! ThreadPool::new().expect("Failed to create threadpool").run(my_app);
    //! ```
    //!
    //! The call to [`run`](crate::executor::ThreadPool::run) will block the
    //! current thread until the future defined by `my_app` completes, and will
    //! return the result of that future.
    //!
    //! # Spawning additional tasks
    //!
    //! There are two ways to spawn a task:
    //!
    //! - Spawn onto a "default" spawner by calling the top-level
    //!   [`spawn`](crate::executor::spawn) function or [pulling the spawner
    //!   from the task context](crate::task::Context::spawner).
    //! - Spawn onto a specific spawner by calling its
    //!   [`spawn_obj`](crate::executor::Spawn::spawn_obj) method directly.
    //!
    //! Every task always has an associated default spawner, which is usually
    //! the executor on which the task is running.
    //!
    //! # Single-threaded execution
    //!
    //! In addition to thread pools, it's possible to run a task (and the tasks
    //! it spawns) entirely within a single thread via the
    //! [`LocalPool`](crate::executor::LocalPool) executor. Aside from cutting
    //! down on synchronization costs, this executor also makes it possible to
    //! spawn non-`Send` tasks, via
    //! [`spawn_local_obj`](crate::executor::LocalSpawn::spawn_local_obj).
    //! The `LocalPool` is best suited for running I/O-bound tasks that do
    //! relatively little work between I/O operations.
    //!
    //! There is also a convenience function,
    //! [`block_on`](crate::executor::block_on), for simply running a future to
    //! completion on the current thread, while routing any spawned tasks
    //! to a global thread pool.

    pub use futures_executor::{
        BlockingStream,
        Enter, EnterError,
        LocalSpawn, LocalPool,
        ThreadPool, ThreadPoolBuilder,
        block_on, block_on_stream, enter,
    };
}

pub mod future {
    //! Asynchronous values.
    //!
    //! This module contains:
    //!
    //! - The [`Future` trait](crate::future::Future).
    //! - The [`FutureExt`](crate::future::FutureExt) trait, which provides
    //!   adapters for chaining and composing futures.
    //! - Top-level future combinators like [`lazy`](crate::future::lazy) which
    //!   creates a future from a closure that defines its return value, and
    //!   [`ready`](crate::future::ready), which constructs a future with an
    //!   immediate defined value.

    pub use futures_core::future::{
        Future, TryFuture,
        FutureObj, LocalFutureObj, UnsafeFutureObj,
    };

    pub use futures_util::future::{
        empty, Empty,
        lazy, Lazy,
        maybe_done, MaybeDone,
        poll_fn, PollFn,
        ready, ok, err, Ready,

        OptionFuture,

        FutureExt,
        FlattenStream, Flatten, Fuse, Inspect, IntoStream, Join, Join3, Join4,
        Join5, Map, Then, WithSpawner,
    };

    #[cfg(feature = "std")]
    pub use futures_util::future::{
        abortable, Abortable, AbortHandle, AbortRegistration, Aborted,
        // For FutureExt:
        CatchUnwind, Shared

        // ToDo: JoinAll, SelectAll, SelectOk, join_all, select_all, select_ok
    };

    pub use futures_util::try_future::{
        TryFutureExt,
        AndThen, ErrInto, FlattenSink, IntoFuture, MapErr, MapOk, OrElse,
        UnwrapOrElse,
        TryJoin, TryJoin3, TryJoin4, TryJoin5,
    };
}

#[cfg(feature = "std")]
pub mod io {
    //! Asynchronous I/O.
    //!
    //! This module is the asynchronous version of `std::io`. It defines two
    //! traits, [`AsyncRead`](crate::io::AsyncRead) and
    //! [`AsyncWrite`](crate::io::AsyncWrite), which mirror the `Read` and
    //! `Write` traits of the standard library. However, these traits integrate
    //! with the asynchronous task system, so that if an I/O object isn't ready
    //! for reading (or writing), the thread is not blocked, and instead the
    //! current task is queued to be woken when I/O is ready.
    //!
    //! In addition, the [`AsyncReadExt`](crate::io::AsyncReadExt) and
    //! [`AsyncWriteExt`](crate::io::AsyncWriteExt) extension traits offer a
    //! variety of useful combinators for operating with asynchronous I/O
    //! objects, including ways to work with them using futures, streams and
    //! sinks.

    pub use futures_io::{
        Error, Initializer, IoVec, ErrorKind, AsyncRead, AsyncWrite, Result
    };
    pub use futures_util::io::{
        AsyncReadExt, AsyncWriteExt, AllowStdIo, Close, CopyInto, Flush,
        Read, ReadExact, ReadHalf, ReadToEnd, Window, WriteAll, WriteHalf,
    };
}

pub mod prelude {
    //! A "prelude" for crates using the `futures` crate.
    //!
    //! This prelude is similar to the standard library's prelude in that you'll
    //! almost always want to import its entire contents, but unlike the
    //! standard library's prelude you'll have to do so manually:
    //!
    //! ```
    //! use futures::prelude::*;
    //! ```
    //!
    //! The prelude may grow over time as additional items see ubiquitous use.

    pub use crate::future::{self, Future, TryFuture, FutureExt, TryFutureExt};
    pub use crate::stream::{self, Stream, TryStream, StreamExt, TryStreamExt};
    pub use crate::task::{self, Poll, SpawnExt};
    pub use crate::sink::{self, Sink, SinkExt};

    #[cfg(feature = "std")]
    pub use crate::io::{ AsyncRead, AsyncWrite, AsyncReadExt, AsyncWriteExt };
}

pub mod sink {
    //! Asynchronous sinks.
    //!
    //! This module contains:
    //!
    //! - The [`Sink` trait](crate::sink::Sink), which allows you to
    //!   asynchronously write data.
    //! - The [`SinkExt`](crate::sink::SinkExt) trait, which provides adapters
    //!   for chaining and composing sinks.

    pub use futures_sink::Sink;

    pub use futures_util::sink::{
        Close, Flush, Send, SendAll, SinkErrInto, SinkMapErr, With,
        SinkExt, Fanout, Drain, DrainError, drain,
        // WithFlatMap,
    };

    #[cfg(feature = "std")]
    pub use futures_util::sink::Buffer;
}

pub mod stream {
    //! Asynchronous streams.
    //!
    //! This module contains:
    //!
    //! - The [`Stream` trait](crate::stream::Stream), for objects that can
    //!   asynchronously produce a sequence of values.
    //! - The [`StreamExt`](crate::stream::StreamExt) trait, which provides
    //!   adapters for chaining and composing streams.
    //! - Top-level stream contructors like [`iter_ok`](crate::stream::iter)
    //!   which creates a stream from an iterator, and
    //!   [`futures_unordered`](crate::stream::futures_unordered()), which
    //!   constructs a stream from a collection of futures.

    pub use futures_core::stream::{
        Stream, TryStream,
        StreamObj, LocalStreamObj, UnsafeStreamObj
    };

    pub use futures_util::stream::{
        iter, Iter,
        repeat, Repeat,
        empty, Empty,
        once, Once,
        poll_fn, PollFn,
        unfold, Unfold,

        StreamExt,
        Chain, Concat, Filter, FilterMap, Flatten, Fold, Forward, ForEach, Fuse,
        StreamFuture, Inspect, Map, Next, Peekable, Select, Skip, SkipWhile,
        Take, TakeWhile, Then, Zip
    };

    #[cfg(feature = "std")]
    pub use futures_util::stream::{
        futures_ordered, FuturesOrdered,
        futures_unordered, FuturesUnordered,

        // For StreamExt:
        BufferUnordered, Buffered, CatchUnwind, Chunks, Collect, SplitStream,
        SplitSink, ReuniteError,

        // ToDo: select_all, SelectAll,
    };

    pub use futures_util::try_stream::{
        TryStreamExt,
        TryNext, TryForEach, ErrInto,
        TryFold, TrySkipWhile,
        IntoStream,
        // ToDo: AndThen, ErrInto, InspectErr, MapErr, OrElse
    };

    #[cfg(feature = "std")]
    pub use futures_util::try_stream::{
        // For TryStreamExt:
        TryCollect, TryBufferUnordered,
        // ToDo: AndThen, InspectErr, MapErr, OrElse
    };
}

pub mod task {
    //! Tools for working with tasks.
    //!
    //! This module contains:
    //!
    //! - [`Context`](crate::task::Context), which provides contextual data
    //!   present for every task, including a handle for waking up the task.
    //! - [`Waker`](crate::task::Waker), a handle for waking up a task.
    //!
    //! Tasks themselves are generally created by spawning a future onto [an
    //! executor](crate::executor). However, you can manually construct a task
    //! by creating your own `Context` instance, and polling a future with it.
    //!
    //! The remaining types and traits in the module are used for implementing
    //! executors or dealing with synchronization issues around task wakeup.

    pub use futures_core::task::{
        Context, Poll, Spawn,
        Waker, LocalWaker, UnsafeWake,
        SpawnErrorKind, SpawnObjError, SpawnLocalObjError,
    };

    #[cfg(feature = "std")]
    pub use futures_core::task::{
        Wake, local_waker, local_waker_from_nonlocal
    };

    pub use futures_util::task::{SpawnExt, SpawnError};

    #[cfg(feature = "std")]
    pub use futures_util::task::{
        LocalWakerRef, local_waker_ref, local_waker_ref_from_nonlocal, JoinHandle
    };

    #[cfg_attr(
        feature = "nightly",
        cfg(all(target_has_atomic = "cas", target_has_atomic = "ptr"))
    )]
    pub use futures_util::task::AtomicWaker;
}