1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
//! Abstractions for asynchronous programming. //! //! This crate provides a number of core abstractions for writing asynchronous //! code: //! //! - [Futures](crate::future::Future) are single eventual values produced by //! asychronous computations. Some programming languages (e.g. JavaScript) //! call this concept "promise". //! - [Streams](crate::stream::Stream) represent a series of values //! produced asynchronously. //! - [Sinks](crate::sink::Sink) provide support for asynchronous writing of //! data. //! - [Executors](crate::executor) are responsible for running asynchronous //! tasks. //! //! The crate also contains abstractions for [asynchronous I/O](crate::io) and //! [cross-task communication](crate::channel). //! //! Underlying all of this is the *task system*, which is a form of lightweight //! threading. Large asynchronous computations are built up using futures, //! streams and sinks, and then spawned as independent tasks that are run to //! completion, but *do not block* the thread running them. #![feature(pin, arbitrary_self_types, futures_api)] #![no_std] #![warn(missing_docs, missing_debug_implementations)] #![deny(bare_trait_objects)] #![doc(html_root_url = "https://rust-lang-nursery.github.io/futures-api-docs/0.3.0-alpha.5/futures")] #![cfg_attr(feature = "nightly", feature(cfg_target_has_atomic))] #[doc(hidden)] pub use futures_util::core_reexport; #[doc(hidden)] pub use futures_core::future::Future; #[doc(hidden)] pub use futures_core::future::TryFuture; #[doc(hidden)] pub use futures_util::future::FutureExt; #[doc(hidden)] pub use futures_util::try_future::TryFutureExt; #[doc(hidden)] pub use futures_core::stream::Stream; #[doc(hidden)] pub use futures_core::stream::TryStream; #[doc(hidden)] pub use futures_util::stream::StreamExt; #[doc(hidden)] pub use futures_util::try_stream::TryStreamExt; #[doc(hidden)] pub use futures_sink::Sink; #[doc(hidden)] pub use futures_util::sink::SinkExt; #[doc(hidden)] pub use futures_core::task::Poll; // Macro reexports pub use futures_util::{ // Error/readiness propagation try_ready, try_poll, ready, }; #[cfg(feature = "std")] pub use futures_util::{ // Async-await join, try_join, select, pending, poll, spawn, spawn_with_handle, }; #[cfg(feature = "std")] pub mod channel { //! Cross-task communication. //! //! Like threads, concurrent tasks sometimes need to communicate with each //! other. This module contains two basic abstractions for doing so: //! //! - [oneshot](crate::channel::oneshot), a way of sending a single value //! from one task to another. //! - [mpsc](crate::channel::mpsc), a multi-producer, single-consumer //! channel for sending values between tasks, analogous to the //! similarly-named structure in the standard library. pub use futures_channel::{oneshot, mpsc}; } #[cfg(feature = "compat")] pub mod compat { //! Interop between `futures` 0.1 and 0.3. pub use futures_util::compat::{ Compat, Executor01Future, Executor01As03, Executor01CompatExt, Future01CompatExt, Stream01CompatExt, }; #[cfg(feature = "tokio-compat")] pub use futures_util::compat::TokioDefaultSpawner; } #[cfg(feature = "std")] pub mod executor { //! Task execution. //! //! All asynchronous computation occurs within an executor, which is //! capable of spawning futures as tasks. This module provides several //! built-in executors, as well as tools for building your own. //! //! # Using a thread pool (M:N task scheduling) //! //! Most of the time tasks should be executed on a [thread //! pool](crate::executor::ThreadPool). A small set of worker threads can //! handle a very large set of spawned tasks (which are much lighter weight //! than threads). //! //! The simplest way to use a thread pool is to //! [`run`](crate::executor::ThreadPool::run) an initial task on it, which //! can then spawn further tasks back onto the pool to complete its work: //! //! ``` //! #![feature(pin, arbitrary_self_types, futures_api)] //! use futures::executor::ThreadPool; //! # use futures::future::{Future, lazy}; //! # let my_app = lazy(|_| 42); //! //! // assumping `my_app: Future` //! ThreadPool::new().expect("Failed to create threadpool").run(my_app); //! ``` //! //! The call to [`run`](crate::executor::ThreadPool::run) will block the //! current thread until the future defined by `my_app` completes, and will //! return the result of that future. //! //! # Spawning additional tasks //! //! There are two ways to spawn a task: //! //! - Spawn onto a "default" spawner by calling the top-level //! [`spawn`](crate::executor::spawn) function or [pulling the spawner //! from the task context](crate::task::Context::spawner). //! - Spawn onto a specific spawner by calling its //! [`spawn_obj`](crate::executor::Spawn::spawn_obj) method directly. //! //! Every task always has an associated default spawner, which is usually //! the executor on which the task is running. //! //! # Single-threaded execution //! //! In addition to thread pools, it's possible to run a task (and the tasks //! it spawns) entirely within a single thread via the //! [`LocalPool`](crate::executor::LocalPool) executor. Aside from cutting //! down on synchronization costs, this executor also makes it possible to //! spawn non-`Send` tasks, via //! [`spawn_local_obj`](crate::executor::LocalSpawn::spawn_local_obj). //! The `LocalPool` is best suited for running I/O-bound tasks that do //! relatively little work between I/O operations. //! //! There is also a convenience function, //! [`block_on`](crate::executor::block_on), for simply running a future to //! completion on the current thread, while routing any spawned tasks //! to a global thread pool. pub use futures_executor::{ BlockingStream, Enter, EnterError, LocalSpawn, LocalPool, ThreadPool, ThreadPoolBuilder, block_on, block_on_stream, enter, }; } pub mod future { //! Asynchronous values. //! //! This module contains: //! //! - The [`Future` trait](crate::future::Future). //! - The [`FutureExt`](crate::future::FutureExt) trait, which provides //! adapters for chaining and composing futures. //! - Top-level future combinators like [`lazy`](crate::future::lazy) which //! creates a future from a closure that defines its return value, and //! [`ready`](crate::future::ready), which constructs a future with an //! immediate defined value. pub use futures_core::future::{ Future, TryFuture, FutureObj, LocalFutureObj, UnsafeFutureObj, }; pub use futures_util::future::{ empty, Empty, lazy, Lazy, maybe_done, MaybeDone, poll_fn, PollFn, ready, ok, err, Ready, OptionFuture, FutureExt, FlattenStream, Flatten, Fuse, Inspect, IntoStream, Join, Join3, Join4, Join5, Map, Then, WithSpawner, }; #[cfg(feature = "std")] pub use futures_util::future::{ abortable, Abortable, AbortHandle, AbortRegistration, Aborted, // For FutureExt: CatchUnwind, Shared // ToDo: JoinAll, SelectAll, SelectOk, join_all, select_all, select_ok }; pub use futures_util::try_future::{ TryFutureExt, AndThen, ErrInto, FlattenSink, IntoFuture, MapErr, MapOk, OrElse, UnwrapOrElse, TryJoin, TryJoin3, TryJoin4, TryJoin5, }; } #[cfg(feature = "std")] pub mod io { //! Asynchronous I/O. //! //! This module is the asynchronous version of `std::io`. It defines two //! traits, [`AsyncRead`](crate::io::AsyncRead) and //! [`AsyncWrite`](crate::io::AsyncWrite), which mirror the `Read` and //! `Write` traits of the standard library. However, these traits integrate //! with the asynchronous task system, so that if an I/O object isn't ready //! for reading (or writing), the thread is not blocked, and instead the //! current task is queued to be woken when I/O is ready. //! //! In addition, the [`AsyncReadExt`](crate::io::AsyncReadExt) and //! [`AsyncWriteExt`](crate::io::AsyncWriteExt) extension traits offer a //! variety of useful combinators for operating with asynchronous I/O //! objects, including ways to work with them using futures, streams and //! sinks. pub use futures_io::{ Error, Initializer, IoVec, ErrorKind, AsyncRead, AsyncWrite, Result }; pub use futures_util::io::{ AsyncReadExt, AsyncWriteExt, AllowStdIo, Close, CopyInto, Flush, Read, ReadExact, ReadHalf, ReadToEnd, Window, WriteAll, WriteHalf, }; } pub mod prelude { //! A "prelude" for crates using the `futures` crate. //! //! This prelude is similar to the standard library's prelude in that you'll //! almost always want to import its entire contents, but unlike the //! standard library's prelude you'll have to do so manually: //! //! ``` //! use futures::prelude::*; //! ``` //! //! The prelude may grow over time as additional items see ubiquitous use. pub use crate::future::{self, Future, TryFuture, FutureExt, TryFutureExt}; pub use crate::stream::{self, Stream, TryStream, StreamExt, TryStreamExt}; pub use crate::task::{self, Poll, SpawnExt}; pub use crate::sink::{self, Sink, SinkExt}; #[cfg(feature = "std")] pub use crate::io::{ AsyncRead, AsyncWrite, AsyncReadExt, AsyncWriteExt }; } pub mod sink { //! Asynchronous sinks. //! //! This module contains: //! //! - The [`Sink` trait](crate::sink::Sink), which allows you to //! asynchronously write data. //! - The [`SinkExt`](crate::sink::SinkExt) trait, which provides adapters //! for chaining and composing sinks. pub use futures_sink::Sink; pub use futures_util::sink::{ Close, Flush, Send, SendAll, SinkErrInto, SinkMapErr, With, SinkExt, Fanout, Drain, DrainError, drain, // WithFlatMap, }; #[cfg(feature = "std")] pub use futures_util::sink::Buffer; } pub mod stream { //! Asynchronous streams. //! //! This module contains: //! //! - The [`Stream` trait](crate::stream::Stream), for objects that can //! asynchronously produce a sequence of values. //! - The [`StreamExt`](crate::stream::StreamExt) trait, which provides //! adapters for chaining and composing streams. //! - Top-level stream contructors like [`iter_ok`](crate::stream::iter) //! which creates a stream from an iterator, and //! [`futures_unordered`](crate::stream::futures_unordered()), which //! constructs a stream from a collection of futures. pub use futures_core::stream::{ Stream, TryStream, StreamObj, LocalStreamObj, UnsafeStreamObj }; pub use futures_util::stream::{ iter, Iter, repeat, Repeat, empty, Empty, once, Once, poll_fn, PollFn, unfold, Unfold, StreamExt, Chain, Concat, Filter, FilterMap, Flatten, Fold, Forward, ForEach, Fuse, StreamFuture, Inspect, Map, Next, Peekable, Select, Skip, SkipWhile, Take, TakeWhile, Then, Zip }; #[cfg(feature = "std")] pub use futures_util::stream::{ futures_ordered, FuturesOrdered, futures_unordered, FuturesUnordered, // For StreamExt: BufferUnordered, Buffered, CatchUnwind, Chunks, Collect, SplitStream, SplitSink, ReuniteError, // ToDo: select_all, SelectAll, }; pub use futures_util::try_stream::{ TryStreamExt, TryNext, TryForEach, ErrInto, TryFold, TrySkipWhile, IntoStream, // ToDo: AndThen, ErrInto, InspectErr, MapErr, OrElse }; #[cfg(feature = "std")] pub use futures_util::try_stream::{ // For TryStreamExt: TryCollect, TryBufferUnordered, // ToDo: AndThen, InspectErr, MapErr, OrElse }; } pub mod task { //! Tools for working with tasks. //! //! This module contains: //! //! - [`Context`](crate::task::Context), which provides contextual data //! present for every task, including a handle for waking up the task. //! - [`Waker`](crate::task::Waker), a handle for waking up a task. //! //! Tasks themselves are generally created by spawning a future onto [an //! executor](crate::executor). However, you can manually construct a task //! by creating your own `Context` instance, and polling a future with it. //! //! The remaining types and traits in the module are used for implementing //! executors or dealing with synchronization issues around task wakeup. pub use futures_core::task::{ Context, Poll, Spawn, Waker, LocalWaker, UnsafeWake, SpawnErrorKind, SpawnObjError, SpawnLocalObjError, }; #[cfg(feature = "std")] pub use futures_core::task::{ Wake, local_waker, local_waker_from_nonlocal }; pub use futures_util::task::{SpawnExt, SpawnError}; #[cfg(feature = "std")] pub use futures_util::task::{ LocalWakerRef, local_waker_ref, local_waker_ref_from_nonlocal, JoinHandle }; #[cfg_attr( feature = "nightly", cfg(all(target_has_atomic = "cas", target_has_atomic = "ptr")) )] pub use futures_util::task::AtomicWaker; }