1.36.0[][src]Struct futures_io::IoSlice

#[repr(transparent)]
pub struct IoSlice<'a>(_);

A buffer type used with Write::write_vectored.

It is semantically a wrapper around an &[u8], but is guaranteed to be ABI compatible with the iovec type on Unix platforms and WSABUF on Windows.

Methods

impl<'a> IoSlice<'a>[src]

pub fn new(buf: &'a [u8]) -> IoSlice<'a>[src]

Creates a new IoSlice wrapping a byte slice.

Panics

Panics on Windows if the slice is larger than 4GB.

Important traits for &'_ mut [u8]
pub fn advance(bufs: &'b mut [IoSlice<'a>], n: usize) -> &'b mut [IoSlice<'a>][src]

🔬 This is a nightly-only experimental API. (io_slice_advance)

Advance the internal cursor of the slice.

Notes

Elements in the slice may be modified if the cursor is not advanced to the end of the slice. For example if we have a slice of buffers with 2 IoSlices, both of length 8, and we advance the cursor by 10 bytes the first IoSlice will be untouched however the second will be modified to remove the first 2 bytes (10 - 8).

Examples

#![feature(io_slice_advance)]

use std::io::IoSlice;
use std::mem;
use std::ops::Deref;

let mut buf1 = [1; 8];
let mut buf2 = [2; 16];
let mut buf3 = [3; 8];
let mut bufs = &mut [
    IoSlice::new(&mut buf1),
    IoSlice::new(&mut buf2),
    IoSlice::new(&mut buf3),
][..];

// Mark 10 bytes as written.
bufs = IoSlice::advance(mem::replace(&mut bufs, &mut []), 10);
assert_eq!(bufs[0].deref(), [2; 14].as_ref());
assert_eq!(bufs[1].deref(), [3; 8].as_ref());

Methods from Deref<Target = [u8]>

pub const fn len(&self) -> usize1.0.0[src]

Returns the number of elements in the slice.

Examples

let a = [1, 2, 3];
assert_eq!(a.len(), 3);

pub const fn is_empty(&self) -> bool1.0.0[src]

Returns true if the slice has a length of 0.

Examples

let a = [1, 2, 3];
assert!(!a.is_empty());

pub fn first(&self) -> Option<&T>1.0.0[src]

Returns the first element of the slice, or None if it is empty.

Examples

let v = [10, 40, 30];
assert_eq!(Some(&10), v.first());

let w: &[i32] = &[];
assert_eq!(None, w.first());

pub fn split_first(&self) -> Option<(&T, &[T])>1.5.0[src]

Returns the first and all the rest of the elements of the slice, or None if it is empty.

Examples

let x = &[0, 1, 2];

if let Some((first, elements)) = x.split_first() {
    assert_eq!(first, &0);
    assert_eq!(elements, &[1, 2]);
}

pub fn split_last(&self) -> Option<(&T, &[T])>1.5.0[src]

Returns the last and all the rest of the elements of the slice, or None if it is empty.

Examples

let x = &[0, 1, 2];

if let Some((last, elements)) = x.split_last() {
    assert_eq!(last, &2);
    assert_eq!(elements, &[0, 1]);
}

pub fn last(&self) -> Option<&T>1.0.0[src]

Returns the last element of the slice, or None if it is empty.

Examples

let v = [10, 40, 30];
assert_eq!(Some(&30), v.last());

let w: &[i32] = &[];
assert_eq!(None, w.last());

pub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output> where
    I: SliceIndex<[T]>, 
1.0.0[src]

Returns a reference to an element or subslice depending on the type of index.

  • If given a position, returns a reference to the element at that position or None if out of bounds.
  • If given a range, returns the subslice corresponding to that range, or None if out of bounds.

Examples

let v = [10, 40, 30];
assert_eq!(Some(&40), v.get(1));
assert_eq!(Some(&[10, 40][..]), v.get(0..2));
assert_eq!(None, v.get(3));
assert_eq!(None, v.get(0..4));

pub unsafe fn get_unchecked<I>(
    &self,
    index: I
) -> &<I as SliceIndex<[T]>>::Output where
    I: SliceIndex<[T]>, 
1.0.0[src]

Returns a reference to an element or subslice, without doing bounds checking.

This is generally not recommended, use with caution! Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used. For a safe alternative see get.

Examples

let x = &[1, 2, 4];

unsafe {
    assert_eq!(x.get_unchecked(1), &2);
}

pub const fn as_ptr(&self) -> *const T1.0.0[src]

Returns a raw pointer to the slice's buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

The caller must also ensure that the memory the pointer (non-transitively) points to is never written to (except inside an UnsafeCell) using this pointer or any pointer derived from it. If you need to mutate the contents of the slice, use as_mut_ptr.

Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

Examples

let x = &[1, 2, 4];
let x_ptr = x.as_ptr();

unsafe {
    for i in 0..x.len() {
        assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
    }
}

pub fn iter(&self) -> Iter<T>1.0.0[src]

Returns an iterator over the slice.

Examples

let x = &[1, 2, 4];
let mut iterator = x.iter();

assert_eq!(iterator.next(), Some(&1));
assert_eq!(iterator.next(), Some(&2));
assert_eq!(iterator.next(), Some(&4));
assert_eq!(iterator.next(), None);

pub fn windows(&self, size: usize) -> Windows<T>1.0.0[src]

Returns an iterator over all contiguous windows of length size. The windows overlap. If the slice is shorter than size, the iterator returns no values.

Panics

Panics if size is 0.

Examples

let slice = ['r', 'u', 's', 't'];
let mut iter = slice.windows(2);
assert_eq!(iter.next().unwrap(), &['r', 'u']);
assert_eq!(iter.next().unwrap(), &['u', 's']);
assert_eq!(iter.next().unwrap(), &['s', 't']);
assert!(iter.next().is_none());

If the slice is shorter than size:

let slice = ['f', 'o', 'o'];
let mut iter = slice.windows(4);
assert!(iter.next().is_none());

pub fn chunks(&self, chunk_size: usize) -> Chunks<T>1.0.0[src]

Returns an iterator over chunk_size elements of the slice at a time, starting at the beginning of the slice.

The chunks are slices and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

See chunks_exact for a variant of this iterator that returns chunks of always exactly chunk_size elements, and rchunks for the same iterator but starting at the end of the slice.

Panics

Panics if chunk_size is 0.

Examples

let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.chunks(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert_eq!(iter.next().unwrap(), &['m']);
assert!(iter.next().is_none());

pub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<T>1.31.0[src]

Returns an iterator over chunk_size elements of the slice at a time, starting at the beginning of the slice.

The chunks are slices and do not overlap. If chunk_size does not divide the length of the slice, then the last up to chunk_size-1 elements will be omitted and can be retrieved from the remainder function of the iterator.

Due to each chunk having exactly chunk_size elements, the compiler can often optimize the resulting code better than in the case of chunks.

See chunks for a variant of this iterator that also returns the remainder as a smaller chunk, and rchunks_exact for the same iterator but starting at the end of the slice.

Panics

Panics if chunk_size is 0.

Examples

let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.chunks_exact(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['m']);

pub fn rchunks(&self, chunk_size: usize) -> RChunks<T>1.31.0[src]

Returns an iterator over chunk_size elements of the slice at a time, starting at the end of the slice.

The chunks are slices and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

See rchunks_exact for a variant of this iterator that returns chunks of always exactly chunk_size elements, and chunks for the same iterator but starting at the beginning of the slice.

Panics

Panics if chunk_size is 0.

Examples

let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.rchunks(2);
assert_eq!(iter.next().unwrap(), &['e', 'm']);
assert_eq!(iter.next().unwrap(), &['o', 'r']);
assert_eq!(iter.next().unwrap(), &['l']);
assert!(iter.next().is_none());

pub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<T>1.31.0[src]

Returns an iterator over chunk_size elements of the slice at a time, starting at the end of the slice.

The chunks are slices and do not overlap. If chunk_size does not divide the length of the slice, then the last up to chunk_size-1 elements will be omitted and can be retrieved from the remainder function of the iterator.

Due to each chunk having exactly chunk_size elements, the compiler can often optimize the resulting code better than in the case of chunks.

See rchunks for a variant of this iterator that also returns the remainder as a smaller chunk, and chunks_exact for the same iterator but starting at the beginning of the slice.

Panics

Panics if chunk_size is 0.

Examples

let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.rchunks_exact(2);
assert_eq!(iter.next().unwrap(), &['e', 'm']);
assert_eq!(iter.next().unwrap(), &['o', 'r']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['l']);

pub fn split_at(&self, mid: usize) -> (&[T], &[T])1.0.0[src]

Divides one slice into two at an index.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

Panics

Panics if mid > len.

Examples

let v = [1, 2, 3, 4, 5, 6];

{
   let (left, right) = v.split_at(0);
   assert!(left == []);
   assert!(right == [1, 2, 3, 4, 5, 6]);
}

{
    let (left, right) = v.split_at(2);
    assert!(left == [1, 2]);
    assert!(right == [3, 4, 5, 6]);
}

{
    let (left, right) = v.split_at(6);
    assert!(left == [1, 2, 3, 4, 5, 6]);
    assert!(right == []);
}

pub fn split<F>(&self, pred: F) -> Split<T, F> where
    F: FnMut(&T) -> bool
1.0.0[src]

Returns an iterator over subslices separated by elements that match pred. The matched element is not contained in the subslices.

Examples

let slice = [10, 40, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());

If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:

let slice = [10, 40, 33];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[]);
assert!(iter.next().is_none());

If two matched elements are directly adjacent, an empty slice will be present between them:

let slice = [10, 6, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10]);
assert_eq!(iter.next().unwrap(), &[]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());

pub fn rsplit<F>(&self, pred: F) -> RSplit<T, F> where
    F: FnMut(&T) -> bool
1.27.0[src]

Returns an iterator over subslices separated by elements that match pred, starting at the end of the slice and working backwards. The matched element is not contained in the subslices.

Examples

let slice = [11, 22, 33, 0, 44, 55];
let mut iter = slice.rsplit(|num| *num == 0);

assert_eq!(iter.next().unwrap(), &[44, 55]);
assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
assert_eq!(iter.next(), None);

As with split(), if the first or last element is matched, an empty slice will be the first (or last) item returned by the iterator.

let v = &[0, 1, 1, 2, 3, 5, 8];
let mut it = v.rsplit(|n| *n % 2 == 0);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next().unwrap(), &[3, 5]);
assert_eq!(it.next().unwrap(), &[1, 1]);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next(), None);

pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where
    F: FnMut(&T) -> bool
1.0.0[src]

Returns an iterator over subslices separated by elements that match pred, limited to returning at most n items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

Print the slice split once by numbers divisible by 3 (i.e., [10, 40], [20, 60, 50]):

let v = [10, 40, 30, 20, 60, 50];

for group in v.splitn(2, |num| *num % 3 == 0) {
    println!("{:?}", group);
}

pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where
    F: FnMut(&T) -> bool
1.0.0[src]

Returns an iterator over subslices separated by elements that match pred limited to returning at most n items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

Print the slice split once, starting from the end, by numbers divisible by 3 (i.e., [50], [10, 40, 30, 20]):

let v = [10, 40, 30, 20, 60, 50];

for group in v.rsplitn(2, |num| *num % 3 == 0) {
    println!("{:?}", group);
}

pub fn contains(&self, x: &T) -> bool where
    T: PartialEq<T>, 
1.0.0[src]

Returns true if the slice contains an element with the given value.

Examples

let v = [10, 40, 30];
assert!(v.contains(&30));
assert!(!v.contains(&50));

If you do not have an &T, but just an &U such that T: Borrow<U> (e.g. String: Borrow<str>), you can use iter().any:

let v = [String::from("hello"), String::from("world")]; // slice of `String`
assert!(v.iter().any(|e| e == "hello")); // search with `&str`
assert!(!v.iter().any(|e| e == "hi"));

pub fn starts_with(&self, needle: &[T]) -> bool where
    T: PartialEq<T>, 
1.0.0[src]

Returns true if needle is a prefix of the slice.

Examples

let v = [10, 40, 30];
assert!(v.starts_with(&[10]));
assert!(v.starts_with(&[10, 40]));
assert!(!v.starts_with(&[50]));
assert!(!v.starts_with(&[10, 50]));

Always returns true if needle is an empty slice:

let v = &[10, 40, 30];
assert!(v.starts_with(&[]));
let v: &[u8] = &[];
assert!(v.starts_with(&[]));

pub fn ends_with(&self, needle: &[T]) -> bool where
    T: PartialEq<T>, 
1.0.0[src]

Returns true if needle is a suffix of the slice.

Examples

let v = [10, 40, 30];
assert!(v.ends_with(&[30]));
assert!(v.ends_with(&[40, 30]));
assert!(!v.ends_with(&[50]));
assert!(!v.ends_with(&[50, 30]));

Always returns true if needle is an empty slice:

let v = &[10, 40, 30];
assert!(v.ends_with(&[]));
let v: &[u8] = &[];
assert!(v.ends_with(&[]));

Binary searches this sorted slice for a given element.

If the value is found then [Result::Ok] is returned, containing the index of the matching element. If there are multiple matches, then any one of the matches could be returned. If the value is not found then [Result::Err] is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Examples

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4].

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

assert_eq!(s.binary_search(&13),  Ok(9));
assert_eq!(s.binary_search(&4),   Err(7));
assert_eq!(s.binary_search(&100), Err(13));
let r = s.binary_search(&1);
assert!(match r { Ok(1..=4) => true, _ => false, });

If you want to insert an item to a sorted vector, while maintaining sort order:

let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let num = 42;
let idx = s.binary_search(&num).unwrap_or_else(|x| x);
s.insert(idx, num);
assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);

pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> where
    F: FnMut(&'a T) -> Ordering
1.0.0[src]

Binary searches this sorted slice with a comparator function.

The comparator function should implement an order consistent with the sort order of the underlying slice, returning an order code that indicates whether its argument is Less, Equal or Greater the desired target.

If the value is found then [Result::Ok] is returned, containing the index of the matching element. If there are multiple matches, then any one of the matches could be returned. If the value is not found then [Result::Err] is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Examples

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4].

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

let seek = 13;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
let seek = 4;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
let seek = 100;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
let seek = 1;
let r = s.binary_search_by(|probe| probe.cmp(&seek));
assert!(match r { Ok(1..=4) => true, _ => false, });

pub fn binary_search_by_key<'a, B, F>(
    &'a self,
    b: &B,
    f: F
) -> Result<usize, usize> where
    B: Ord,
    F: FnMut(&'a T) -> B, 
1.10.0[src]

Binary searches this sorted slice with a key extraction function.

Assumes that the slice is sorted by the key, for instance with sort_by_key using the same key extraction function.

If the value is found then [Result::Ok] is returned, containing the index of the matching element. If there are multiple matches, then any one of the matches could be returned. If the value is not found then [Result::Err] is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Examples

Looks up a series of four elements in a slice of pairs sorted by their second elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4].

let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
         (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
         (1, 21), (2, 34), (4, 55)];

assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b),  Ok(9));
assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b),   Err(7));
assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13));
let r = s.binary_search_by_key(&1, |&(a,b)| b);
assert!(match r { Ok(1..=4) => true, _ => false, });

pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T])1.30.0[src]

Transmute the slice to a slice of another type, ensuring alignment of the types is maintained.

This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The method may make the middle slice the greatest length possible for a given type and input slice, but only your algorithm's performance should depend on that, not its correctness. It is permissible for all of the input data to be returned as the prefix or suffix slice.

This method has no purpose when either input element T or output element U are zero-sized and will return the original slice without splitting anything.

Safety

This method is essentially a transmute with respect to the elements in the returned middle slice, so all the usual caveats pertaining to transmute::<T, U> also apply here.

Examples

Basic usage:

unsafe {
    let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
    let (prefix, shorts, suffix) = bytes.align_to::<u16>();
    // less_efficient_algorithm_for_bytes(prefix);
    // more_efficient_algorithm_for_aligned_shorts(shorts);
    // less_efficient_algorithm_for_bytes(suffix);
}

pub fn is_sorted(&self) -> bool where
    T: PartialOrd<T>, 
[src]

🔬 This is a nightly-only experimental API. (is_sorted)

new API

Checks if the elements of this slice are sorted.

That is, for each element a and its following element b, a <= b must hold. If the slice yields exactly zero or one element, true is returned.

Note that if Self::Item is only PartialOrd, but not Ord, the above definition implies that this function returns false if any two consecutive items are not comparable.

Examples

#![feature(is_sorted)]
let empty: [i32; 0] = [];

assert!([1, 2, 2, 9].is_sorted());
assert!(![1, 3, 2, 4].is_sorted());
assert!([0].is_sorted());
assert!(empty.is_sorted());
assert!(![0.0, 1.0, std::f32::NAN].is_sorted());

pub fn is_sorted_by<F>(&self, compare: F) -> bool where
    F: FnMut(&T, &T) -> Option<Ordering>, 
[src]

🔬 This is a nightly-only experimental API. (is_sorted)

new API

Checks if the elements of this slice are sorted using the given comparator function.

Instead of using PartialOrd::partial_cmp, this function uses the given compare function to determine the ordering of two elements. Apart from that, it's equivalent to is_sorted; see its documentation for more information.

pub fn is_sorted_by_key<F, K>(&self, f: F) -> bool where
    F: FnMut(&T) -> K,
    K: PartialOrd<K>, 
[src]

🔬 This is a nightly-only experimental API. (is_sorted)

new API

Checks if the elements of this slice are sorted using the given key extraction function.

Instead of comparing the slice's elements directly, this function compares the keys of the elements, as determined by f. Apart from that, it's equivalent to is_sorted; see its documentation for more information.

Examples

#![feature(is_sorted)]

assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len()));
assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));

pub fn is_ascii(&self) -> bool1.23.0[src]

Checks if all bytes in this slice are within the ASCII range.

pub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool1.23.0[src]

Checks that two slices are an ASCII case-insensitive match.

Same as to_ascii_lowercase(a) == to_ascii_lowercase(b), but without allocating and copying temporaries.

pub fn to_vec(&self) -> Vec<T> where
    T: Clone
1.0.0[src]

Copies self into a new Vec.

Examples

let s = [10, 40, 30];
let x = s.to_vec();
// Here, `s` and `x` can be modified independently.

pub fn repeat(&self, n: usize) -> Vec<T> where
    T: Copy
[src]

🔬 This is a nightly-only experimental API. (repeat_generic_slice)

it's on str, why not on slice?

Creates a vector by repeating a slice n times.

Panics

This function will panic if the capacity would overflow.

Examples

Basic usage:

#![feature(repeat_generic_slice)]

fn main() {
    assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);
}

A panic upon overflow:

#![feature(repeat_generic_slice)]
fn main() {
    // this will panic at runtime
    b"0123456789abcdef".repeat(usize::max_value());
}

Important traits for &'_ mut [u8]
pub fn concat<Item>(&self) -> <[T] as Concat<Item>>::Output where
    Item: ?Sized,
    [T]: Concat<Item>, 
1.0.0[src]

Flattens a slice of T into a single value Self::Output.

Examples

assert_eq!(["hello", "world"].concat(), "helloworld");
assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);

Important traits for &'_ mut [u8]
pub fn join<Separator>(
    &self,
    sep: Separator
) -> <[T] as Join<Separator>>::Output where
    [T]: Join<Separator>, 
1.3.0[src]

Flattens a slice of T into a single value Self::Output, placing a given separator between each.

Examples

assert_eq!(["hello", "world"].join(" "), "hello world");
assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]);
assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]);

Important traits for &'_ mut [u8]
pub fn connect<Separator>(
    &self,
    sep: Separator
) -> <[T] as Join<Separator>>::Output where
    [T]: Join<Separator>, 
1.0.0[src]

Deprecated since 1.3.0:

renamed to join

Flattens a slice of T into a single value Self::Output, placing a given separator between each.

Examples

assert_eq!(["hello", "world"].connect(" "), "hello world");
assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);

pub fn to_ascii_uppercase(&self) -> Vec<u8>1.23.0[src]

Returns a vector containing a copy of this slice where each byte is mapped to its ASCII upper case equivalent.

ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', but non-ASCII letters are unchanged.

To uppercase the value in-place, use make_ascii_uppercase.

pub fn to_ascii_lowercase(&self) -> Vec<u8>1.23.0[src]

Returns a vector containing a copy of this slice where each byte is mapped to its ASCII lower case equivalent.

ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', but non-ASCII letters are unchanged.

To lowercase the value in-place, use make_ascii_lowercase.

Trait Implementations

impl<'a> Deref for IoSlice<'a>[src]

type Target = [u8]

The resulting type after dereferencing.

impl<'a> Debug for IoSlice<'a>[src]

Auto Trait Implementations

impl<'a> !Send for IoSlice<'a>

impl<'a> Unpin for IoSlice<'a>

impl<'a> !Sync for IoSlice<'a>

impl<'a> UnwindSafe for IoSlice<'a>

impl<'a> RefUnwindSafe for IoSlice<'a>

Blanket Implementations

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> From<T> for T[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]